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Abstract: An analytical-numerical method 1s presented that can be used to determine the dynamic behavior of
pre-stressed Rayleigh been carrying an added mass and traversed by uniform partially distributed moving

loads. This study demonstrates the transformation of a familiar governing equation into a new solvable coupled
partial differential equations, been solved using Finite Difference Method. Furthermore, the study show that
the response of structures due to moving mass which has often been neglected in the past, must be properly
taken into account because it often differs significantly form the moving force model.
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INTRODUCTION

As pointed out by Esmailzadeh and Ghorash (1994,
1993) the study of analysis of structures carrying moving
loads apparently started in the middle of the last century,
when raillway construction began Now there are many
scientific research papers and even a few books devoted
to this field (Esmailzadeh and Ghorash, 1994, 1995; Akin
and Mofid, 1989; Fryba, 1971; Adetunde, 2003; Akinpelu,
2003; Clough and Penzien, 1993). Since the middle of the
last century, when railway construction began, much of
the research has focused on the effect of various physical
phenomena on concentrated/distributed moving masses
of Euler Bernoulli, Rayleigh and Timoshenko beam.

In spite of all the published worlk, there seems to be
very little literature concerned with the pre stressed beams
(beams which do experience compression when no
external load 1s applied 1.e. artificial creation of stresses in
structure before loading) of any type. This problem has
some practical applications: They are commonly
mcorporated in the design of aero planes. Advances in
technology have accelerated the utilization of such
pre- stressed structural elements. Tn general an aircraft is
subjected to a wide range of temperature variation during
flight which may
compressive pre-stressed in the beams when they are
fixed in the plane direction. Tt is therefore, of technological
interest to investigate to what extent the dynamic

cause considerable tensile or

response of the beam 15 affected by the moving loads.
The main objectives of this study are to:

¢ Present a very simple technique to analyze the
governing differential equation of a pre-stressed
Rayleigh beam.

¢  Present a very simple technique to determine the
response of simple supported pre-stressed Rayleigh
beam, carrying an added mass and traversed by
uniform partially distributed moving loads.

¢ Determine the response of amplitude of the deflection
of the simply supported pre-stressed Rayleigh beam.
Carrying an added mass and traversed by umform
partially distributed moving loads.

¢ Determine the variation in the lateral displacement of
the simply supported pre -stressed Rayleigh beam
carrying an added mass and traversed by uniform
partially distributed moving loads.

MATHEMATICAL MODEL

We consider the case of a partially distributed load
M which assumed to strike a finite Rayleigh beam of
length L., initially at time t = 0 and advancing uniformly
along the beam with a constant velocity, V.The beam 1s
assumed to be simply supported at the left hand end of
the beam (Fig. 1) while the beam has an attached mass at
the other end x = L.
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Fig. 1: Mathematical model

PROBLEM FORMULATION

The partial differential equation describing the
traversed displacement of a pre-stressed Rayleigh beam
carrying an added mass at one of its ends and traversed
by uniform partially distributed load is given as
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Where
E = The modulus of elasticity
I = The second moment of area of the beam’s

cross-section.
M = The mass per unit length of the beam
W(x,t) = The deflection of the beam
b’ = The radius of gyration
X = The spatial coordinate
t = Time
N = Ts the pre stressed constant.
G (x,£) = The resulted concentrated force which can be

defined as
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Where

{ = A particular distance along the length of the beam

€ = The length of the load

M, = The constant mass of the load which is assumed to
be constant with the beam during the course of the
motion.

= Acceleration due to gravity.

Heaviside unit function, which is defined as

9
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Here the first term in the first square bracket on the
R.H.S of Eq. 2 describes the constant gravitational force,
while the second term accounts for the effect of
acceleration m the direction of the transverse deflection
W(x,t) the third term 15 for complementary acceleration
and the fourth term for the centripetal acceleration. The
second square bracket describes the Heaviside unit
function.

BOUNDARY CONDITIONS

Equation 1 and 2 1s subject to the followmng end
supports. At the end x = 0, one of the following holds.

W, t)=0=W'(x1)
Wix,t)=0=W"(x, t) (4
W'x 1) =0=W"(x, t)
W' ) =0=W"(x, t)

These conditions are sometimes called classical
boundary conditions.

For the attached mass at the other end (x = L) we have
(1.e., the non-classical boundary conditiomn)

EIW'(L,t) - ' TW (L, £)=0
EI W™ (L, t) + @ My(L, t) =0 (5)

Where, T 1s the mass moment of inertia at the end of
the beam, w’ is the circular frequency and M, is the

attached mass at the end x = L.
The corresponding initial conditions are:

W(x,0)=0= %(x, 0) (6)

SOLUTION TECHNIQUE
In order to solve the 1.B.V. problem described by

Eq. 1-6, we furst substitute Eq. 2 mto Eq. 1 so that the
govermng differential equation becomes

Elo*Wix ) L MEWED M Wit N&W(xt)
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We assume that the transverse displacement of the
beam, W(x, t) can be expressed in the form

WY 6, (0% (x) (®)

i=1
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Where ¢, (x)’s = Are the unknown function of time We remark that ¢,(t) and W(t) are the unknown
Hix)s = Are the known eigen function of free functions of time t and ¥ (x) are the normalized deflection
vibration of the beam. curves. Substituting Eq. (8) into Eq. (7) we have

B 60X 60+ m > 0% 00-mb S 50X 00 - N oy (1% =
i1 i-1 i1 i1
JMLg M| X060+ 2V 0%, 001 VEY gi(0Xp(0) Hx &+ j - H[x —&- j]

i=1 i=1 i=1

We further assume that the load function can be expressed as
Fl = wi(0X;(x) (10)
i=1

Where 1,(t) are unknown functions of time and X(x) as said earlier. Multiplying both sides of the r.h.s of Eq. (9) by
X(x) and taking the definite integrals of both sides along the length L of the beam w.r.t. x, we have

L @ L
%!Xj(x){H[x—i+§J—H{X—i—%ﬂdX—%{;J’:(U!Xi(x)xj(x){l‘l(x_§+§]—H(X—i—§ﬂ€b€}—
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L
H(x—e’;—%ﬂdx}—wi(t)in(x)Xj(x)
0

Evaluating the improper integrals in the Lh.s of equation (11) terms by terms by integral by parts and using the
following two properties of Dirac delta functions (see Appendix)

XZ
I Xj(x) 8 (x-xp)dx = X;(x). Provided xp <%; <X, (12)

dXiH(x-xl):S(x-xl) (13)
We finally obtained
= 2 D ee e 2
Mg {Xi(iﬁ o X5 (i)w - ML;“%(U{Xi (@X;8)+ B [X; (X8 + 23 (OX @)+

D . 2
X&) |} - 2MLVZ¢i<t>{X;(§)Xj@+ o BOX;E) 2 @X{ 2+ Xi'(é)xj“(a)}} (14)

i=1

MLVZZM){X;'(&)XJ-(&) v, PRexEaxEx© Xi“(é)xj"@}} = (1)

i=l
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Note H(x-£-5 ) ]dx]
¢ TIn the rhis of Eq 11 we have made use of the 2
orthonormal principle. , L
*  Onmnoting that Eq. 10 1s the applied force F(x,t), Eq. 9 N=-MV [Zd}i(t),‘-xi” (x )Xi(x) [H (x £ +&) -
now becomes € o1 0
€
APPENDIX H L=l
© L
In order to derive Eq. 13 the function F (x, t) 1s =
e Fa 9 0= S it X0t (A3)
assumed to be expressible as —
i= 0
F(x,t) = ZWi(t)Xi(X) (Al) Consider the first term that is K, using integration by
i=1 parts,
Where the P(t)’s are unknown functions of time. By K=_M.g
substituting for W (x, t) from Eq. 8, multiplying both sides =
of the rhs. of Eq. 10 by X(x) and taking the definite L L
integral of both sides along the length of the beam with {HH (x-& +E -Hix-E - E) } —J.X-(X)dx
respect to X we obtain Eq. 14. z z 0 ! o

1, o
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L
_‘-Xj(x) XM E-E+S)-Hx-E£-S)]dx ] —ZMpV Using the property of Heaviside function and the
. 2 2 S figure below:
© L Y
[$ . O | x. @MHEE+5)-H(xL-S ) ]dx] x l
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p A L
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HxE 2] dd =S o f A2 e : e g
(x —ifa )] dx] = lewi(t)ij(x)Xi(x)dx (A2) < _ >
i= 0
L L
The above integrations can be convienently carried K= MI J-Xj (xWB{x—&+ E)dx -
out term by term by defining them as follows: = 0 0 2 (A5)

X{(x08(x — £ - %)dx

=R
=R

L
K= f%jxj(x) [H(x £+E)»Hx-=£-5)]dx
€ ! 2 2

Now setting , equation K becomes;

@ L
-_ M _ SR L
B [Zﬂ’i (t) ! X0 XML G+ o) Do) = [ X;x
0

H (x - - )]dx |
2 M, g L . L .
@ L K="—"L8 | D(x)8(x - &+ —)dx — | D(x)8(x — &— D)dx
M = L\iLV [3 0 @ j xj(x)x<x>[H<x-a+§>— € ! 2 ! 2
= 0 (A6)
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Thus by the property of Dirac delta function, we have

K- %{D@ S -De+ E)} (A7)
< 2 2
M L L
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Using Taylor’s series expansion, we obtain
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Hence
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Following similar argument, the second improper mtegral

@ L
1] = < c =
L=-Mp _Zl:tti(t)_‘- {Xi G+ X8+ D)= Xl - DXe -~ ) |dx (AlD)
1= 0
Which reduces to
L=-M, ZJ;} (0) {X(R (D) HX"E) XD + 2 X XD + XL XD (A12)
i=1

Also the third and the fourth improper integrals M and N becomes

@ L
B . , 5 5 , I3 I3 Al3
MzMLv;wt)! {Xi(ag)xj(ag)Xi@E)XJ-(éE)}dx (Al3)
o0 L
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N=-MV ;Mt)! [X 5+ DXG(E+ D)= X~ DXyt 2>}dx (A1)

Respectively which finally reduces to

M=-2MV i¢l O OXEOH+ & XD X0+ 2 X0 XD+ X(0) XD+ oce) (A15)
i=1 24
And

N =-M_V* Z¢i EXIOX" () + S s X0+ 2 X0 X0+ X(e) XD+ 0(e™) (Ale)

i1 24
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Respectively,
By using orthogonality relation

@ L
0= Zwi(t)jxj(x)xi(x)dx becomes P(t). (A17)
=1 o

SIMPLY SUPPORTED PRESTRESSED RAYLEIGH BEAM WITH AN ATTACHED MASS

The dynamic response of the system under consideration (a beam carrying a mass at the end x = L. and traversed
by partially distributed moving load) having a simply supported boundary conditions 1s considered. (In particular the
beam under consideration 1s sunply supported at x = 0 while carrying a mass at the end x = L).

The end conditions are as prescribed in Eq. (4- 6) and corresponding kernel can be easily shown as

X(x) = sind x + psinh Lix (16)
L L
Where

. 2 .
B, = El g; sing; x + o JLcosqi (17)

El g; sing; x - mZJLcoshqi X
and qi1s the roots of the associated transcendental frequency equation given as

2m2MAsinqi sinhqi

cosq; sinhg;-singi cosh q;-

2
Elg;
2 2 JL cosqi coshqi

Ely’”

2
+
(]?Tl\(féj[smqi coshq; - cosq; sinhg;] =0 (18)

i

The transcendental frequency Eq. 18 1s solved, using Newton Raphson’s method.

The governing differential equation for vibration of the beam, for the particular case under consideration could be
obtained thus by deriving exact governing equations by employing Eq. 16 and evaluating the exact values of the integral
m Eq. 11. After along lengthy simplification, we finally have
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Equation 19 is the desired exact differential equation
describing the behaviour of a Prestressed Rayleigh beam
carrying an added mass at one of 1t’s ends but traversed
by a distributed moving load. The highly coupled
equation is solved numerically.

Note: For the case of q = g, we replace the

expression involving 1/(q, —q;) by q&/2L.
NUMERICAT. ANALYSIS

Tosolve Eq. 19, recourse can be made to a numerical
method; but 2 mteresting cases are to be tackled.

Case 1: The moving force Prestressed Rayleigh Beam
problem :- A moving force problem is one m which the
mertia effects of the moving load are neglected and only
the right hand side of the later except the first term in the
first curly bracket. (i.e., by neglecting all the terms apart
from the first term on the rh.s of Eq. 19).

Case II: The moving mass Prestressed Rayleigh Beam
problem is one in which both the inertia effects and the
force effects are retamed. 1.e., the whole Eq. 19 1s the
mass problem. To obtain results given in this study,
approximate central difference formulas have been
utilized for the derivatives in Hg. 19 for both cases
(Cases I and 1I). Thus, for N model shapes Eq. 19 are
transformed to a set of N linear algebraic equations, which
are to be solved for each interval of time. Regarding the
degree of approximations involved, in order to ensure the
stability and comvergence of the solution, sufficiently
small time steps have been utilized.

954
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Computer program was developed and the following
numerical data which are the same as those in reference
(Gorashi and Esmailzadeh, 1995; Akin and Mofid, 1989)
were used, for the purpose of comparisms:

E=207x10"N/m’I=1.04x10*m*, V = 12km/h,
M = 70kg, g = 9.8m/s°, m = 7.04kg,
L=10m,t=105s 1.0s, 1sb=0.05me =0.1m, lm

RESULTS AND DISCUSSION

The numerical method of 2 distinct dynamic problems
are discussed These problems have to do with two cases
talked about m the numerical analysis, viz; determining
the response of a prestressed Rayleigh beam with an
attached mass to uniform partially distributed moving
force. Determining the response of a prestressed Rayleigh
beam with an attached mass to uniform partially
distributed moving mass.

Figure 2 with respect to Table 1, shows the variation
of the deflection or W; (x, t) of the moving force
prestressed simply supported Rayleigh beam carrying a
lumped mass at its end x = L at t = 0.55, £ = 0.1m for
various values of M. It was observed that the amplitude
deflection W (X, t) increases as M, increases.

Similar analysis was carried out for Fig. 3 with respect
to Table 2, butt =1.0s, & = 0.1m, for various values of M, .
Itwas observed also that the amplitude deflechon Wi
(x, t) increase as M, increases.

Figure 4 with respect to Table 3 contain analysis
which shows the variety of the deflection W (x, t) of the
moving force prestressed simply supported Rayleigh
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that the maximum deflection decreases as € increases for
fixed value of M| and time t.
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Fig. 4. Deflection W; (x, t) of the moving force
prestressed simply supported Rayleigh beam

carrying a lumped
Table 1: Variation of the deflection W (x, t) of the moving force prestressed

simply supported Rayleigh beam canying a lumped mass at its
end x =L att=0.5s, e = 0.1 m and for various values of M,

Length of the Wi (x,t) for My Wr (x, ) for My Wi (x, t) for M,
beam X{m) =7.0dkem™! =80kgm™! =10kgm™!
1.469 2.3200E-02 6.5099E-02 -3.9440E-01
2.888 -2.5761E-02 -7.3362E-02 4.3260E-01
4.307 -2.7458E-02 6.50063E-02 2.3767E-01
5.726 3.0172E-02 9.4489E-02 -6.6627TE-01
7.145 -7.7132E-02 -2.9304E-02 2.3501E-01
8.564 -3.7150E-02 -9.2205E-02 3.4316E-01
9.983 4.2145E-03 3.9614E-02 -5.4443E-01

Table 2: Variation of the deflection W (x, t) of the moving force prestressed
simply supported Rayleigh beam carrying a lumped mass at its
end x =L att=1.0g, £ = 0.1m and for various values of M;

Length ofthe Wy (x,t) for M, Wi (x, t) for M, Wi (x, t) for My
beam X(m) =7.0d kgm™! =8.0kgm™! =10kgm™!
1.469 1.6241E-01 2.2785E-01 -1.4000E+00
2.888 -1.8032E-01 -2.5677E-01 1.5000E+00
4.307 -1.9221E-01 -2.2772E-01 8.3000E-01
5.726 2.1120E-01 3.3073E-01 -2.3000E+00
7.145 -5.3994E-02 -8.2383E-02 8.2000E-01
8.564 -2.6010E-01 -3.2000E-01 1.2000E+00
9.971 2.9502E-02 1.4000E-01 -1.9000E+00

The next analysis ivolved a prestressed Rayleigh
beam simply supported at x = 0, but an attached mass
x = L. The beam was traversed by a uniform partially
distributed mass as opposed to a distributed force Fig. 5.
with respect to Table 4 contains the various values of the
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Table 3: Variation of the deflection Wk (x, t) of the moving force prestressed
simply supported Rayleigh beam carrying a lumped mass at its
endx =L att=1s, £= 0.1m and for various values of M;

Length of the Wy (x,1) for M, Wr (x, ) for My Wi (x, t) for M,
beam X(m) =7.04kgm™! =80kgm! =10kgm™!
1.853 0.023068 3.2395E-02 -1.7874E-01
3.206 -0.025649 -3.6486E-02 1.9585E-01
4.559 -0.027373 -3.2431E-02 1.0680E-01
5.912 0.030031 4.6926E-02 1.0655E-02
7.265 -0.0076902 -1.4518E-02 1.0655E-02
8.618 -0.037092 -4.5905E-02 1.5368E-02
9.971 0.0041507 1.9512E-02 2.4770E-02

Table4: The deflection of the prestressed Rayleigh beam to a moving mass
at £ = 0.1m, t = 0.5s, at various values of m (i.e. m =8 and 10

kgm™.
Length of the W (x, t) for M W (3¢, t) for My
beam X(m) =80kgm™! =10kgm™!
1.469 1.6800E-04 1.6900E-04
2.88 5.6400E-04 5.7000E-04
4.306 1.0300E-03 1.0500E-03
5.726 1.4200E-03 1.4400E-03
7.145 1.6000E-03 1.6200E-03
8.564 1.4500E-03 1.4600E-03
9.983 1.1200E-03 1.1400E-03

Table 5: The lateral transverse deflection of the prestressed rayleigh beam at
£=0.1m, t = 1s, at various values of the moving mass m (i.e., m
=7.04,8 10 and 15ke m™

Length of Wy (x,t) Wi (x, ) Wi (x, ) Wr(x, 0)
thebeam  for M; = for M, = for M, = forM; =
X{m) 7.04 kg m™! 8.0kgm™ 10kg m™ 15kgm™
1.469 2.8900E-04 2.8900E-04 2.8900E-04 2.91E-04
2.88 9.6900E-04 9.6900E-04 9.7100E-04 9.76E-04
4.306 1.7800E-03 1.7800E-03 1.7800E-03 1.79E-03
5.726 2.4500E-03 2.4500E-03 2.4500E-03 2.46E-03
7.145 2.7500E-03 2.4480E-03 2.5720E-03 2.76E-03
8.564 2.4900E-03 2.4900E-03 2.5000E-03 2.51E-03
9.983 1.9400E-03 1.9400E-03 1.9500E-03 1.96E-03

Table 6: The lateral transverse deflection of the prestressed rayleigh beam at
g = lm, t = 0.3s, for various values of m (i.e. m =7.04, 8 and 10

kg m™)
Length ofthe Wi (x,hfor My Wy (x, t) for M, Wr (x, t) for My
beam X(m) =7.0d kgm™! =80kem! =10kgm™*
1.853 R.3500E-04 S.4200E-04 8.60E-04
3.206 -8.2600E-04 -8.3300E-04 -8.47E-04
4.559 -8.0400E-04 -8.0900E-04 -8.17E-04
5.912 -4.1200E-04 -4.1200E-04 -4.08E-04
7.265 4. 2400E-05 4.2600E-05 5.69E-05
8.618 2. T900E-04 2.8600E-04 3.01E-04
9.971 2.3600E-04 2.4100E-04 2.50E-04

Table 7: Deflection of the prestressed rayleigh beam at € = 1m, t = 1s, for
various values of m (lLe. m=7.04, 8and 10 ke m™")

Length of the  Wr (x,t) for My W (¢, t) for My W (3, t) for My
beam X(m) =7.0dkgm™! =80kgm™! =10kgm™!
1.853 9. 1200E-04 1.4000E-03 1.41E-03
3.206 -1.0200E-03 -9.7200E-04 -1.41E-03
4.559 -1.2100E-03 -1.3800E-03 -1.39E-03
5.912 -9.4000E-04 -7.5000E-04 -745E-04
7.265 -4,5000E-04 3.4400E-07 1.34E-05
8.618 -2.0300E-05 4.2300E-04 4.38E-04
9.971 1.3800E-04 3.7800E-04 3.86E-04

lateral deflection, Wy, ; (%, t) for the prestressd Rayleigh
beam at various values of x: However £ =0.1m and t=0.5s
Fig. 6-8, with respect to Table 5-7, respectively contain
similar values o Wy (x. ) butfor Q)e=01mand t=1.0s.
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Fig. 5: The prestressed Rayleigh beam to a moving mass
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Fig. 6: Various values of m (1e, m=7.04,8and 10kg m™

(i) e=10mandt=05m. (iii)) e=1.0mandt=1.0s,
respectively. It 15 evident from these four figures and
tables that the amplitude deflection mcreases as M,
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Table 8: The Displacement of the Prestressed Rayleigh beam at difterent =(=
=0.1 and 1.0) at various time t(s)

Length of the bearmn X(m) £e=10.1 =1

0.43 1.6700E-04 8.3500E-04
0.86 5.6100E-04 -8.2600E-04
1.29 1.0300E-03 -8.0400E-04
1.72 1.4200E-03 -4, 1400E-04
2.15 1.5900E-03 4.2000E-05
2.58 1.4400E-03 2.7900E-04
3.01 1.1200E-03 2.3600E-04

increases for a particular value of t and £ Also the
amplitude deflection increases as time t increases for
various values of M, and the fixed value of €.

Figure & with respect to Table 8 shows the variation
of deflection Wy» (%, t) against time t. It can be seen from
this that amplitude deflection decreases as & increases or
various values of t and a fixed value of M, .

CONCLUSION

The problem of investigating the dynamic analysis of
prestressed Rayleigh beam carrying an added mass and
traversed by uniform partially distributed moving loads is
studied. Analytical numerical technique 1s used to solve
the pertinent initial-boundary value problem. Tt was
observed that

Amplitude deflection of the moving force
prestressed Rayleigh beam are greater than those of
the moving mass.

Tt was also observed that amplitude deflection
decreases as € increases for various values of t and
a fixed value of M.
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Consequently, relying on the result of the moving
mass may be misleading because from the comparisms of
the moving force and moving mass (Fryba, 1971) results
indicates an at least 80% different between the two results
and thus shows the mmportance of including mass in real
design conditions where the velocity 1s high. Finally, the
writers believe that the methods will efficiently serve
design engineers in real design conditions.
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