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Abstract: In this study, we present a method for designing customizable progressive addition lenses (PALs)

where, the desired mean curvature map (or power map) can be drawn by the user (optician), interactively.

Tensor B-splines are used to approximate the lens surface.
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INTRODUCTION

The research presented in this study was performed
as part of a research project with a private Canadian
company, which no longer exists, manufacturing a free
form surfacing machine used for cutting optical lenses in
the ophthalmic industry. The objective was to develop the
mathematical method and numerical algorithms which
would allow opticians to customize progressive addition
lenses (PALSs) for their patients. PALs are commonly used
mn the correction of presbyopia and are characterized by
a gradient of increasing lens power, added to a patient’s
prescription. The gradient starts at a mimmum, or no
addition power, at the top of the lens and reaches a
maximum addition power, magnification, at the bottom of
the lens. The disadvantage of PALs 1s related to the
distortion, or aberrations, away from the near region and
the far region centers and the optical axis, or progressive
corridor, which connects these (Sheedy et al, 2005).
Because of this, patients require an adaptation period
which can limit sales of PALs (Sheedy ef al., 2006). PAL
mamufacturers are therefore continually seeking more
efficient PALs design methods which reduce distortions
along the optical axis and optimize other design features.
However, the adaptation to PALs 1s lighly personalized
and depends on the user (Sheedy et al., 2006). A method
which would enable a customizable design in the presence
of the patient 1s therefore, of great interest.

Details of PAL design methods are highly proprietary
but insight into recent methods can be obtained from the
patent literature. Some of the patents reviewed for this
work were Shamir Optical Industries (2001), Sola
International Holdings Ltd. (2000, 2001), Carl-Zeiss-
Stiftung (1998), Nikon-Essilor Co., Ltd. (2001) and Seiko
Epson Corporation (2000). Of mterest 1 these patents
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were the vastly different design methods and the criteria
used for the designs, especially the astigmatism
(asphericity) constraints in the progressive corridor. Also,
it was interesting to note that the mean curvature is
widely used as the means of imposing the optical power
of a lens (Shamir, 2001). Also, recent PALs design
methods use a lens with 2 progressive surfaces to achieve
the desired design criteria (Johnson and Johnson, 2005).

The mam difficulty with imposing the mean curvature
on a network of grid points is the non linearity of the
expression giving the mean curvature which leads to non
linear systems of equations which can only be solved
using numerical methods. In this research, we will present
a method of designing PALs which would allow the
opticians to customize the lens in the presence of a
patient, interactively. It assumes that opticians will
eventually, have access to free form surfacing machines
in their offices.

Tensor b-spline representation of a surface: Since,
the mean curvature 1s used i many reviewed patents
to impose lens powers, a method of determining the
height of a surface over a rectangular grid when
its mean curvatures are known at the grid points is
required. Following the approach used by
Tazeroualti (1994) tensor B-splines were selected as
the method of approximating the lens surfaces mainly
because of the form of the normalized approxmmation as
shown in Fig. 1.

If the height values of a surface, f (x, y) = £, are
known on a square grid where, i =1, 2, nt+6,j=1,2,
I, K = Xy H (F3)AX L ¥ = Vi T (-3)Ay, Ax = (K
X nand Ay = (V. T V) 11, where, 0118 the number of
intervals in the x and y directions between grid points 3

and n+ 3, as shown in Fig. 1, the following tensor product
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Fig. 1: A square grid of pomnts over which a progressive
surface 1s defined

of 4th degree B-splines centered at (1, ) can be used to
approximate F (x, y) as:

i+2 2
f(x,y)= Z Z AI—Z(SX)Ak—Z(Sy )fj (1)
I=i-2 k=j-2
Where,
LG
Ax
And
(y-vy,)
e =
¥ Ay

are the normalized coordinates withx, < x <x, ¥, < y <y;,
O<e<1,0<e<] and
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1
A(e)= i(l—sy)4

1
ALE)= a(11—1235, —68,°+128 ° —4e ")

1
AL(E)= ﬁ(l 1+128, — 68,7 —122,° + 68,y )

1
A (g,)= E(l +de +68” +48” —4et)
1.
Aeg)= ﬁgy .
The advantage of the normalized tensor B-spline
above is that it has the same form at every grid point.

Derivatives of F (x, y) can also be calculated as:

A (x i+2 2
=TS S LA L)
Ox 1572 k=j-2
of X, 42 42
P YD EC AT
l=1-2 k=j-2
Zf X, i+2 42 .
£, =50 3 S ALEAE) @
ax Ii-2 k=1-2
zf i+2 2
=T 5 3 3 AL
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£ AL (DA L&, )1
 ~ oxdy 1122 k;Z H v J
Where,
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4 1 2 3
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MATERIALS AND METHODS

With the derivatives calculated as above, the mean
curvature, h (x, v;), at the grid points (x;, y,) can be
calculated using:

S2ELE (U EDE,

Y

(-1, )

h(x,y) =

1
2 El
(1 +1] +f] )2

The mean curvature, h (x, y;). = h; to be imposed at
every grid point can be specified by drawing the desired
mean cwvature level curves using any software with
drawing and mterpolation capabilities. Once the level
curves are drawn by the user and interpolated by the
software, the mean curvature map at the grid points is
read by the PALs design program. This approach worked
very well with MATLAB which has all the necessary
drawing and interpolation capabilities.

In order to mathematically mmpose the mean
curvatures and other design criteria at the grid points, the
following error function can be mimmized:
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h

(flll =f112= f§+5n+4= fI+5n+5) =
n+5 n+5
S0, (hi— b, + o [(ME, ~LF) +
i=1 j=1
(NE,~L,GY+MG, -NFE+o.(f, £, +
@, (fxocls frap)” + 0 (yaﬁ frog)” 00 (xyas o)
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where, h ; is the calculated mean curvature at grid point ij,
; 1s the imposed mean curvature at grid point ij, f.5, foun,
fop foan are the calculated values of f, its first derivative
with respect to x, its first derivative with respect to y and
its cross derivative, respectively, at grid point afl, f,;, .z
fiun. fyen are the imposed values of f and its derivatives at
grid point ofi, w, ©, @; Oy, W, O are the mean
curvature, astigmatism, function value, derivative with
respect to x, derivative with respect to y and cross

derivative weights, respectively.
E,. I, G, are the first fundamental coefficients of the

surface z = f (X, y) at grid point 1) given by

E, :1+f2J
=f.f

le yl]

—1+f2

¥y

(8)

1J

and L;, M, N, are the second fundamental coefficients at
point ij given by

L= e 1
(1 +f;lJ +fy21])2

M, = ©)
(1+1f;, +fyu)2

N, = L .
(+£% +17 )2

X1 ¥y

All directions at a point 1) are principal directions if
and only if

which means the second term in the error function above
controls the sphericity (or astigmatism) of the surface. In
order for the problem to be well-posed, the height the
surface has to be specified at a certain pomt «f3. The
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derivatives of f are also specified at this point also to obtain a well-posed problem but these derivatives are related to

the prism (angle) of the lens which 1s part of a lens prescription. The function values

(flll » f112 E

will minimize the error function if

n+5 n+5

A, (£, (Bg)
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Expressing condition (10) atl< s < n+5,1<p<
n+ 5 leads to an (n + 5) = (n + 5) system of nonlinear
equations which is difficult to solve, even numerically.
Therefore, an iterative method based on the approach
used by Tazeroualti 13 used where, by the values of the
derivatives f, and f, are assumed known and treated as
the first iteration and are updated
iteratively until they no longer change sigmificantly. The
corresponding system of linear equations can be solved
using a standard linear system solver. The following
algorithm can be used to calculate the

constants  at

I I I
(f f n+5n+4’f +5n+5

IERSTER
values that minimize the above error function.
Algorithm:

+  Define grid as in Fig. 1.

*  Read n mean curvature map (and weights maps).

+  Start with initial guesses for f, and f, at every grid
point.

Express (n+ 5) x (n+ 5) system of linear equations by
evaluating the condition

OE
I
of,
at every grid point.
Solve linear system for
(f'lll > f112 E n+5n+4 2 f1+5n+5
Calculate f, and £, at every grid point using the tensor
B-splines and the values calculated at step 4.
Repeat steps 3-5 until the values £, and f, no longer
change sigmficantly.

RESULTS AND DISCUSSION

The method presented mn this paper has been tested
with MATLAB and has been proven very successful for
the design of a progressive lens based on a mean
curvature map specified by a user (optician). We have
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Mean Curvature (D)

2: Mean curvature level curves for-1 D base curve
witha+2 D add

Fig.

Astigmatism (D)

¥ (i)

3: Astigmatism (asphericity) level curves for-1 D base
curve with a +2 D add

Fig.

also adapted the method to accept a weight map for w,,
W, Wy, Wy, Wy, Wy, Which enables the designer to control
the grid points at which a certain design parameter is more
important in relation to the other parameters. These
weight maps can also be drawn as level curves and read
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into the program. This approach also worked very well. A
sample design is shown below in Fig. 2 and 3. The results
are shown for a design where, a mean curvature map was
imposed for a-1 D bage curve with a +2 D add, minimizing
astigmatism everywhere and imposing the height ofa-1 D
sphere at the centre of the far region. The values of the
weights for this design were: w,= 1, w,=1, 0, =1, W, =1,
W, = 1, g, = 1. The results in Fig. 2 and 3 are for a very
coarse grid of only 25 by 25 points. A diopter (D) is a unit
of measurement of the optical power of a lens which is
equal to the reciprocal of the focal length measured in
metres.
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