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Applving the WKB Method to the Bifurcation of an Everted
Spherical Shell Made of Elastic Varga Material

M. Sanjarani Pour and M. Vakilian
Department of Mathematics, Sistan and Baloochestan University, Zahedan, Iran

Abstract: The WKB method is a powerful tool to obtain solutions for Eigenvalue problems. We apply the WKB
method to the bifurcation analysis of everted a spherical shells composed of Varga material. Incompressible
cases are considered. The method is degenerate, but we obtam explicit bifurcation criteria and compare with

previous numerical approximations.
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INTRODUCTION

Eigenvalue problem that results from the linear
bifurcation analysis for which, it 1s possible to write the
exact solution are encountered quite seldom. Most often
either numerical or asymptotic methods are used for
searching the solutions. Tn many theoretical and applied
problems, the possibility of obtaining the asymptotic
solution allows to carry out the most complete analysis of
a problem. Therefore, hardly there is a necessity to explain
in detail importance of creating and investigating
asymptotic methods for the solving the Eigenvalue
problem by Bush (1992). The Wentzel-Kramers-Brillouin
quast classical approximation (or WKB method) 15 one of
basic and most umversal asymptotic methods of solving
problems of theoretical and mathematical physics In a
series of studies, Haughton and Orr (1995), Chen and
Haughton (1997) and Haughton and Chen (1599) were
investigated various aspects of the problem of everting
isotropic hyperelastic shells. In particular for the
bifurcation problem for these shells it turns out that there
is a critical mode number, which gives the thickest shell
for which, we can expect the shape of the undeformed
shell to be mamtained upon eversion. For different
materials these mode numbers maybe fimte or infimte. The
numerical analysis of the bifurcation problem seems to
cope very well Fiite mode numbers are found as
accurately as we want while, the numerical methods
appear to approach an asymptote for the infimte mode
number. However, it would be interesting and useful to
know what the asymptote actually is, if only to confirm
that the numerical solution is approaching the correct
value. Fu and Sanjarani (2002) and Sanjarani (2001) and
have shown that with the aid of a symbolic manipulation
package, it is possible to apply the WKB method to

the incompressible cylinder problem discussed by
Haughton and Orr (1995). They found that the WKB
method was degenerate for the Varga material.

In the study, we apply the WKB method to the
bifurcation analysis of everted spherical shells of Varga
materials and compare with numerical approximations
(Haughton and Chen, 1999). We show efficiency of WKB
in such case.

Spherical shell: The undeformed spherical shell occupies
the region:

0<A<R<B, 0<O<m, 0<d<In (1)

in spherical polar coordinates (R, ©, @) where, A and B
are the inner and outer radii of the undeformed cylinder.
The spherical shell undergoes the deformation:

r=r(R), 8=n-6, ¢=> (2)
where,
r,0, ¢ Also spherical polar coordinates and
rR) = A smooth, strictly decreasing function

The everted shell occupies the region

O<a<r<b, 0<0<m, 0<0<2n (3)

and the principal stretches are given by Eq. 4:

A =—I(R), A, =h, = % -y (4

where, a dash indicates differentiation with respect to R.
However, we shall employ an Eulerian formulation of the
problem so we make appropriate changes of variables
when needed.
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MATERIALS AND METHODS

TIncompressible material: When, the material is incomp-
ressible we require Eq. 5:

T=h R, =1 ()
and then Eq. (4) gives Eq. (6):

P _a? =R _R? (6)
We also note that:
B —a’ =B’ —A® (1)

The sphere 13 composed of a homogeneous, 1sotropic
and hyper elastic material, which is associated with a
strain-energy function that depends on the deformation
gradient through the principal stretches:

W=W(h, Ay, As)
For incompressible materials the principal
components of the Cauchy stress tensor ¢ are given by
Eq. (8):
g, =0 —p=AW, —p,i =123, no sum (8)

where, p 1s the hydrostatic pressure and W, = dW/3A,.

In the absence of body forces, the equilibrium of the
deformed spherical shell requires the Cauchy stress
tensor to be divergence free. By Eq. (2) with Eq. (4 and 5),
the only non-trivial equilibrium Eq. (9) 1s:

d 2
aGIIJr;(GII 7622)20 ®)

In general, we assume, that the cavity does not close
so that we have a>0 and the appropriate boundary
conditions are then zero traction on the inner and outer
surfaces:

0,=0forR=A,R=B (10

Chen and Haughton (1997) and Haughton and Chen
(1999) for further discussion of boundary conditions. For
this problem, the equilibrium Eq. (9) can be integrated to
give the hydrostatic pressure to within an arbitrary
constant. The two boundary conditions Eq. (10) determine
this arbitrary constant and the deformed inner radius a. In
this study, we are concerned with the Varga material
where 1n the incompressible case, we have:

Wk, Ay hg) = 2000, + 4, + 4, —3) (1

where, p is the positive ground state shear modulus. In
this case, the equilibrium Eq. (9) reduces to:

dp_ _ 8u 12)

& R

Using Eq. (6), this can then be mntegrated. The
constant of integration is found by applying Eq. (10). We
can then write down Eq. (10), which gives an equation for
a i terms of A and B.

Bifurcation: The equations describing ncremental
deformations are well known, Ogden (1997). For
completeness, we give a brief description. Full details for
the eversion of incompressible spherical shells can be
found by Haughton and Chen (1999). In the absence of
body forces, the incremental equilibrium equations can be
written as:

divy =0 (13)
where:
div = The divergence operator in the current
configuration
% = The ncrement in the nominal stress in the current
configuration

Since, no loading is imposed on the surface of the
body the incremental boundary conditions are given by
Eq. (14):

¥'n=0 (14

where, n 1s the unit outward normal to the surface of the
everted shell. The incremental constitutive law is Eq. (15):

x=BVT+p V-pl (15)
where:
B = The fourth order tensor of instantaneous moduli
in the current configuration
I = The identity and we have written V for F,

The non-zero components of B for a general 1sotropic
material can be written as Eq. (16):

.0, —0,
BiJ‘J :7\;1 W, )\"1 #)\41
Dk BW (16)
Bn]] = B]]n = ! H]
I oo,
B1J1J - BIJJI = Bl_]l] - B_]u_] = 613 1 :'é.]

where, for incompressible materials, o, are defined n
Eq. (8) and we set T =1. For this problem, we have A, = A,
and we obtain Eq. (17):
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B,., =(B B, +0,)/2 (an

2323 2222~ P

It was shown by Haughton and Chen (1999) that
without loss of generality, we may consider an
mcremental displacement Eq. (18):

X, =(u(r, ), v(r, 8),0) (18)

with respect to spherical coordinates. Hence, V has
components Eq. (19):

,ur - ; _
r
V=|v, U+ve 0 (19
r
0 0 u+vecotd
r

where, subscripts denote partial derivatives. Since, the
material is incompressible, we have Hq. (20):

B,
T T

v =y, By Yetveots (20)

Substituting Eq. (18) with Eq. (19) mto (13), we obtain
Eq. (21):
) r ue
P, =Byu, + 0B, +p+ 2B1111)T

U, +1u,coth
2
r

2D

s
+ Bun + 208, + By

—Baa 7B2233)
vy +vecoto Vot v, cotB
I_z + (BIIZZ + BIZZI) - rf

; , ’ Yq
Pe =By +1p + By + By By + B2121)T

+ (BIIZZ + BlZZl)urG + rBlZlZVn’ + (rBIZIZ + 2B1212)Vr (22)
’ £ v
_(rBIZZI + rp + B1221 + B2121 + B2233 + COtz eBZZZZ )¥
P, =0 (23)

If, we look for separable solutions and write as
Eq. (24):
u=f£ (r)p,[cosnb]
aape" [cosnB]
p=Kk_ (r)p [cosnd]

(24)

v=g,r)

where, there is implied summation from n = 0...e and p,
(cos®) are legendre polynomials.
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Substituting Eq. (24) with Eq. (21) and also m=n
(m+1):

K =B, [+ @B,

+1p'+2B,,,)

1111

f ,
;JV 2(r]?’nzz + B1122 - B2121 B Bzzzz B B2233 B

m%)?-’— m(rB,; + By ~Buy — B —Buys)
g 4
oz —m(B,,, + By )=
T T

and as past case by substituting Eq. (24) with Eq. (22) and
alsom=n(n+1)

’ r f
k={B, + 1 + By + By By, + lem);

+ (B1122 + B1221)f’+ rBlZlZ g”i(rBIZZI + I-p’ (26)

g
+ B1221 + BZIZI + B2233)+ (mil)BZZZZ r

It 1s now possible to eliminate g, and k, to obtain a
single equation for £, (r). In general, there 1s no particular
advantage 1n doing this but for the asymptotic analysis,
it greatly sumplifies the calculations. In this case, the
incremental  equilibrium  equation and boundary
conditions for an arbitrary incompressible material can be
written as:

B, " + 2r°[4B,,,, + 1B, 1T
+[{2B,,, - B B, +2B

+10rB:212 + 10]31212 7B2233 - B1221 + B2121 + Bzzzz]rzf”
+[{2(I"B1122 + I"]31’221 + 281122 + 2B1221 o Bzzzz 7B1111)

”

2
222 1221}m+r B1212

71"821 no rB’zzzz ym + 2(1‘2]3:’212 +2 rB:mz) T ngzzz (27)
1By + 1B — 1B 2By — Boyss + Bos
2B, — Blzzl)]rf"" [(m+ 1)B2121 + ngz:s:s
_rB;m — Bl ~Bas T B
U'Bfjy; — 1By, + 1B, + 2By, — 2B, ]
(m-2)f=0

where, m = n (n+ 1) and we have omitted the subscript n
from £, (r). The boundary conditions Eq. (14) can be
written as:

B, r'f”+ 41"2]31212 £+ [Buz + Baign =Bz —Buaass
+m(2B1221 + 2anz _B1212 _Bzzzz _B1111)] rf’
Jr[2]31221 + 281122 o B1212 B Bzzzz o B1111] (m-2)f =0,

(28)

on the boundary r = a,r = band
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7+ 2rf + (m - 2)f =0 (29)

We now have a homogeneous system for f (r). The
bifurcation criterion is that there should be non-trivial
solutions to this system.

RESULTS AND DISCUSSION

Asymptotic results for n>>1: Following Fu and Sanjarani
(2002, 2001), apply the WKB method and look for
solutions of the form:

f(r) _ T(r)e-[:nS(X)dX (30)
Where:
T:TD+3+T—§+T—§+---, (31)
n n

and S(r) 1s to be determined. For the aim, it is sufficient to
look at the leading two terms only. Substituting Eq. (30)
and (31) into the incremental equilibrium Eq. (27) gives to
leading order in n:

B1212 st 7(B2222 72(]31221 + anz)
+ ]31111)Iszz +B,,]T, =0

(32)

independent solutions ' = 1, 2, 3, 4. When, we go to the
next highest order in the equilibrium equation, we then
obtain a simple algebraic equation for T,, which depends
on 3 (1) . Substituting the four solutions for 3(r) gives four
solutions for T, (r). This might be thought of as the
standard WKB method Combining T, and S through
Eq. (30), then provides the four independent solutions
that we require for f (r).

Looking at subsequent orders of n gives similar
algebraic equations for T, T,, etc., where, the equations
mvolve derivatives of the functions already found.

It then follow that the non-zero elastic moduli are
given by Eq. (33):

A S A
= 1 X
o, PRy

Bijji -

(=i (33)

However, the problem is rather different for the Varga
material Eq. (11). In this case, the equilibrium equation
Eq. (31) reduces to Eq. (34):

T,(r“A*s - 2028?41 = 0 (34)

and so we have only two mdependent solutions for S(r).
Using the notation introduced above we write as:
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S, =5, =vAN 1’ =I/R(),

S, =8, =—A* /1t =—Jr/R(rY’

(35)

Looking at the next order in Eq. (27), for the Varga
material, we find that the equation is identically zero. This
Effectively removes the possibility of an algebraic
expression for T;, which 1s to be expected sice, S 1s
deficient. The third order Eq. (36) is:

T @S- 3+ BT, — @7 2%
TS 220)T, 116 =0

(36)

having used Eq. (32). Substituting in the two independent
solutions for S(r) gives the required four solutions for T;.
We denocte these four independent solutions by T¥, (r),
k=1, 2,3, 4 Similarly in principal, we will have a hierarchy
of equations successively giving T, T, etc. We can now
replace Eq. (30 and 31) by Eq. (37):

fr) = ick THr)E® (1) (37)

1=1
Where:
k
T (1) +
n

T* = T*(r) + and B = TR (38)

for some constants CX, k = 1, 2, 3, 4. As we shall shown
below a leading order analysis of the bifurcation criterion
does not require an explicate valuation of T;.

On substituting Eq. 37 into the boundary conditions
Eq. (28 and 29), we obtain Eq. (35):

4 4
Y ke (nE Y =0, Y COMmE Py =0 (39
i=1 i=1

Where to O (I/n), we have:

a¥ =oal + laf) + O(LZ]

i i 1 i 1
Rt Y
1 1

and
0;61) = rs(i)TD(i)[rZ(S(i))z —%0 -1
[EXT T (¥ ol 5 P g TEN TR N Iraiyd iy
o =rSUTE(SYY — D7 DA EOUTYY
38UV SYYTY + 407 (89 TV — (207 + 1T
+ 892+ DT -0 +00)TY
and
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v =8V Y + T
vV = (8YY + DTV + 20’ 8T Y
+r88YY T + 28U T + Ty

(42)

The boundary conditions Eq. (39) yield a matrix
equation of the from:

EMU C=0,i=1234 (43)
Where: 7
a®@  oP@  a¥@ e
(M) - W e e @ | g

Eoa®®) E,a®®) E,a®®b) E,o“b)
Ex¥(b) Exy®(b) E4¥0) Ey®(b)

and B, =E¥ (b) (i=1, 2, 3, 4). A non-trival solution for C
requires:

det (M) =0 (45)

In the case, E,, E, are exponentially large whereas, E,,
E, are exponentially small. Thus, we have

det M) [ab) o) | a®d) o @) L EST
E,E, v yOm) || v@@ v
(46)

Where, EST stands for exponentially small terms.

Thus, the Eq. (43) can be replaced with an error, which 1s
exponentially small by two matrix Eq. (47):

al(b) )|’
rV(b) ¥ J[C
a?(by oV@) | C*_,
YW@ yW@llct]

By using Eq. (41 and 42), we note that Eq. (47 and 48)
can be replaced, respectively by Eq. (49):

=0 (47

(48)

M) &R || TP 0 (49)
o) 00 [CTVm) ]
aPb) V@) || TV @) | (50)
@ ¥ @ [CT @) ]

Where:

[&(i) (a), ,\?(i) (a)] _ [ot(i)(a), ,Y(i) (a)]/ T(i) (a) (51)
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And

[60 (), 9 )] =0 (), OO TO®) (52

To highest order in n both 2x2 determinants are
identically zero. To the next order, we get tow symmetrical
conditions:

Gal =BT -T ) Lm0 53

G - ANTHTY -y )=o)

The asymptotic bifurcation criterion 1s then either
Eq. (52) and (53).

Since, the function T',(r) and T°,(r) are linearly
independent solution of the same second order different
Eq. (31), the second factor in Eq. (52) (the Wronskian of
T'yr) and T’i(r)) is not zero. Similarly, for the second
factor in Eq. (54). There then seem to be two possible
bifurcation criteria. If we consider:

b= A%/3 (55)

The mcompressibility result Eq. (7) coupled with a>0

leads to the requirement that

AY/B? >% (56)

Hence, only thin shells are allowable. Further m the
interval 3/4<AB’<1, we find from Eq. (535) that the
deformed mmner radius a lies m the mterval that the
defamed mmer radius a lies in the interval:

0<a<(l/3)' =0.693

However, from the analysis outlined n above Eq. (11)
for the Varga material Eq. (11), it turns out that everted
shells with A’/B’>3/4 have a deformed inner radius
significantly greater than that given by Eq. (43). Hence,
the only possible asymptotic bifurcation criterion is:

2 =R¥/3 (57)

In Haughton and Chen (1999), there is a Table 1 of

bifurcation results for the Varga material giving critical

values of A/B . Here, we repeat the table but include
values for a/B. Clearly, we can shown how

a/B 53" = 069336127
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Table 1: Critical values of A/B and corresponding values of a/B for various
mode numbers in respect of the incompressible Varga material

Mode n AB a'B

5 0.419483 0.682664
10 0.427109 0.684236
15 0.440293 0.687050
20 0.447465 0.688633
25 0.451753 0.689598
50 0.460106 0.691517
100 0.464099 0.692453
150 0.465393 0.692760
200 0.466033 0.692911
250 0.466414 0.693002
300 0.466668 0.693062
350 0.466848 0.693105
400 0.466983 0.693137
450 0.467087 0.693162
500 0.467171 0.693182
550 0.467240 0.693198
600 0.467297 0.693212
650 0.467345 0.693223

We shows that the numerical results gave the correct
asymptotic result to three decimal places despite being
very slowly convergent.

CONCLUSION
We have shown how it is generally possible to apply

the WKB method to obtain a first order approximation to
the bifurcation criterion for a variety of problems. Tt seems

82

that those materials where, the asymptotic mode number
15 the critical one will also have a degenerate WKB
analysis.
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