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Abstract: The present study attempts to optunize machining parameters of Electrochemical grinding while
machining alumina-aluminum interpenetrating phase composites by Grey-taguchi methodology. Control
parameters like electrolyte concentration, voltage, depth of cut and electrolyte flow rate have been considered
to ensure 2 conflicting responses higher material removal rate and lower surface roughness simultaneously by
a single parametric combiation. The L, orthogonal array design is followed for the purpose of experimentation.
The well known S/N ratio analysis 1s performed along with ANOVA to establish the prominent variables that
govern the responses separately. Finally, grey relational analysis is performed to optimize multiple performances
in which different levels combinations of the factors are ranked based on grey relational grade. Surface
roughness 1s given more mmportance than the MRR considering basic objective of the process. The analysis
reveals that substantial improvement in machming performance takes place following this techmque.

Key words: Electrochemical grinding, taguchi method, signal-to-noise ratio, grey relational analysis, machining

performance, India

INTRODUCTION

Manufacturing industries all across the globe is
passing through the dramatic changes caused by
globalization, rapid proliferation in communication and IT
enabled services. These changes essentially call for
several modifications in the traditional way of working to
survive in this complex business environment. Use of
emerging and non-conventional techniques of machining
and alternative materials i1s one of the major steps to cope
with the changes. Electrochemical Grinding (ECG), a
useful non-conventional hybrid machimng process, used
for machiming difficul-to-machme alloys, hardened, fragile
and thermal sensitive parts (El-Hofy, 2005). The material
removal is a dual effect of electrochemical dissolution and
mechamcal grinding and found to be superior over
conventional grinding.

The growing use of electrochemical grinding as
compared to the conventional grinding is based upon
several fimdamental advantages of the process. ECG has
high material removal rate as compared to the
conventional grinding when working with the tough-to-
machine materials such as high temperature resistant Co-
Ni alloys, ligh tensile strength matenals etc.
(Benedict, 1987). The material removal in the ECG process
can be attributed to purely mechanical abrasion
electrochemical removal combined with mechanical
abrasion with zero over cut electrochemical removal
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coupled with mechanical means with over cut >0 and
absolutely electrochemical reaction (Atkinson and Nobel,
1987). While comparing between electrochemical and
mechanical grinding, it 1s found that the ECG process has
some advantages like enhanced material removal rate,
reduced risk of thermal damage and less wheel wear. Tnput
variables like voltage, electrolyte flow rate, electrolyte
concentration and depth of cut sigmficantly contribute to
both Material Removal Rate (MRR) and surface finish
(Ra). Few research works have been carried out to
establish the optimal process variables so as to achieve
better surface finish and higher material removal rate
(Bhowmick and Mishra, 2000; Reddy er af., 2000).
Nevertheless, there is hardly any mathematical model
involving process variables that can successfully
describe neither MRR nor Ra. Both the objective being
conflicting m nature, it 15 very difficult to achieve them
simultaneously by a single set of process variables. The
present research is aimed at optimization of process
variables in regard to high MRR and good Ra
concurrently following grey relational analysis technique.

MATERIALS AND METHODS

The Taguchi method 1s a well organized approach to
improve product/process design by optimizing a single
response through level settings of significant parameters
that affect the response (Taguchi, 1986; Phadke, 1989;
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Park, 1996). However, increase in process variables
eventually augments the number of experiments to be
conducted, thereby increasing the time and cost. To get
rid  of such situations, the Taguchi method
recommends that a small numbers of experiments using
special design orthogonal arrays are sufficient for this
purpose. S/N ratio 1s one of the major attributes of
Taguchi based quality engineering that 1s based on the
premise of variability reduction and the improvement of
measurement (Montgomery, 2003).

Based on the nature of objective (s), it can have 3
distinct categories higher the better, lower the better and
nominal-the-better. Nevertheless, the larger S/N ratio is
always favorable irrespective of the above categories.
Although, this procedure yield very good result for a
single performance characteristic with great ease, it 1is
difficult for optimizing several responses simultaneously
which are contradicting in nature. This necessitates
computation of an overall S/N ratio by suitable
transformation function. Such problems, however can be
solved successfully following Grey Relational Analysis
(GRA).

The grey system theory was proposed by
Deng (1989) and it 15 widely used for analyzing a system
in which the model is uncertain or the information is
incomplete implying a combination of known and
unknown mformation (Lin and Liu, 2004; Lu and Wevers,
2007). It also provides an efficient solution to complicated
interrelationships among multiple response parameters
(Wang et al., 1996). Based on the grey theory, a system
can be mvestigated by means of relational coefficient,
relational grade so as to take final decision regarding
selection of optimum variables combination based on
highest grade. The grey relational analysis 13 very much
effective to evaluate the multiple response parameters by
converting individual responses to a single grey relational
grade.

Lu et al (2008) used this technique to establish
optimal cutting parameters while rough cutting processes
mn side milling for SKD61 tool steels to improve tool life
and MRR by 54 and 9.7%, respectively employing low
spindle speed, moderate level of feed per tooth and radial
depth of cut while mamtaming highest level of depth of
cut. Kuo et al. (2008) followed this approach for an IC
packaging company in order to find out the best plant
layout among 18 alternatives by considering 6 attributes
and for a hybnd flow shop environment for ranking mne
dispatching rules having five attributes. Lin and Lin (2002)
optimized the process variables like worl piece polarity,
pulse on time, duty factor, open discharge voltage,
discharge current and dielectric flud on the responses
such as material removal rate, surface roughness and
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electrode wear ratio following GRA while machining
SKDI11 alloy steel by copper electrode in EDM. The
analysis shows sigmficant improvements in performances
following optimized process variables combination. Tsao
(2009) adopted Grey-taguchi method to optimize milling
parameters while machining AG061P-T651 aluminum alloy
so as to reduce surface roughness and flank wear. Lin
(2004) recommended low level of cutting speed, feed and
depth of cut to enhance tool life and to reduce cutting
force and surface roughness during turning of S45C steel
by P20 tungsten carbide inserts. Few other similar
researches are available by Yan-Min et al. (2007) and Kao
and Hocheng (2003).

Plan of experimentation: In this study, an experimental
study has been carried out on specimen of alumina-
aluminum interpenetrating phase composites material to
optimize the machining parameters of electrochemical
grinding for maximum MRR and minimum Ra following
GRA. During machimng of composite materials by ECG,
MRR and Ra have got different grades of importance. In
case of finishing operation Ra is given more priority than
MRR. These conflicting response parameters require
different levels setting of the machiming parameters for
their optimization.

So  proper machining parameter set up for
simultaneous optimization of the responses 1s critical
When performing an experiment, varying the levels of the
factors simultaneously rather than one at a time is efficient
in terms of time and cost and also allows for the study of
interactions between the factors. Based on past research
and preliminary mvestigation, 4 parameters 1.e., electrolyte
Concentration (C), Voltage (V), Depth of cut (D) and
electrolyte Flow rate (F) have been chosen as input
parameters. A L, orthogonal array is employed for the
experimentation.

The input parameters were varied with three levels in
nine experimental run. According to GRA technique, the
characteristic that a larger value represents the better
machining performance, such as lgher MRR 15 called
larger the better type problem. On the other hand, the
characteristic that smaller value indicates better machining
performance such as Ra 1s addressed as smaller the better
type problem. Table 1 extubits the different levels of
control parameters during machining operation. Other
factors like feed, types of power supply, electrolyte
temperature which may affect the measured performance
were kept constant during experimentation. Sodium
chloride solution was used as electrolyte. The work piece
was a flat rectangular plate of dimension 23x15%5 mm
thick. Power supply mamtained was D.C continuous. In
the present research, a diamond impregnated metal
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Table 1: Tnput variables with their levels

Table 3: Parametric combinations for experimental min and the resp onses

Levels
Input variables Units 1 2 3
Concentration (C) g7t lits 20.00 25.00 30.00
Voltage (V) Volts 15.00 20.00 25.00
Depth of cut (D) mm 0.04 0.08 0.12
Electrolyte lits/sec 0.10 0.20 0.30
Flow rate (F)

Table 2: Properties of the alumina-aluminium IPC work material
Values (Synthesis condition

Properties is 11500°/24 h)

Cormpressive strength (MPa) 576

Micro hardness no.(VHN) 364

Bend strength (MPa) 458+15

Elastic modulus (GPa) 67

Fracture origin: Principal Separation at Al;05/Al
grain boundary

Bulk density (gm cm™) 3.54

Conductivity (105 ohm™ 0.4

cm™! at RT)

Grain size (micromn) ALO; -4.27and Al - 1.42

bonded grinding wheel of 150 mm diameter and 12.27 mm
width was used. The width of the layer containing the
diamond was 3 mm and the abrasive grit size was 100. A
DC motor rotating at a speed of 3500 rpm drove the
grinding wheel mounted at the end of the spindle. During
machining, current was recorded that appeared on the
ammeter connected to the electrical circuit. Figure 1 shows
the machining setup with feed drive mechamsm
attachment. A microprocessor based controller unit
controls the feed drive mechanism of the worlctable during
grinding. A stepper motor (Type: STM-1100) having
torque 10 kg cm and angular resolution of 1.8%/step with
voltage phase: 24 VDC and current phase: 0.67 Ampere
was used for the feed drive mechanism of the worktable.

Mechanical and other properties of work piece
material i.e., ALO,/Al interpenetrating phase composites
are exhibited in Table 2. MRR was measured by dividing
the difference in weight of the workpiece before and after
machining by the time duration of machming. An
electronic weighing machine of accuracy 0.02 mg of
mettler toledo make (model no-AG285) was used for this
purpose. Ra was measured with perthometer-M1 of mahr
gmbh make.

Orthogonal array experiment: To select an appropriate
orthogonal array for experiments, the total degrees of
freedom need to be computed. The degrees of freedom are
defined as the number of comparisons between machiming
parameters that need to be made to determine which level
is better and specifically how much better it is. For
example, a three-level machining parameter counts for
2 degrees of freedom. The degrees of freedom associated
with interaction between 2 machining parameters are
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Responses

Control parameters e
Experiment MRR Ra
no. C A% D F (gmin™)  (un
1 20 15 0.04 0.1 0.067 0.168
2 20 20 0.08 0.2 0.141 0.214
3 20 25 0.12 0.3 0.053 0.837
4 25 15 0.08 0.3 0.125 0.195
5 25 20 0.12 0.1 0.151 0.516
6 25 25 0.04 0.2 0.079 0.924
7 30 15 0.12 0.2 0.373 0.206
8 30 20 0.04 0.3 0.524 0.157
9 30 25 0.08 0.1 0.093 0.402

Machining
charrber

Stepper
motor

Fig. 1: The machining setup

given by the product of the degrees of freedom for the
2 machining parameters. In the present study, the
interaction between the machining parameters is
neglected. An L, orthogonal array with 4 columns and
9 rows 18 used. This array has eight degrees of freedom
and 1t can handle three-level process parameters. Nine
experiments are required to study the entire linear motion
guide parameter space when the L, orthogonal array is
used. The experimental layout for the machining
parameters using the L, orthogonal array along with the
responses 1s shown mn Table 3.

RESULTS AND DISCUSSION

In this study, the experimental results are analyzed to
investigate the contribution of different process variables
on various responses by using S/N ratio and ANOVA.
The S/N ratio converts several repetitions mto one value
that manifests the amount of variations and the mean
response.

The ANOM is an important and potential technique
to establish the prominence of various factors and their
levels (mam effects) on the response. The optimum level
of a factor 1s the level that provides lighest values of S/N
ratio. ANOVA is a statistical technique that helps estimate
the significance of variables by variance ratio (F-value)
and to compute % contribution of each factor.



J. Eng. Applied Sci., 5 (5): 354-360, 2010

Analysis of test results for MRR: The Signal to Noise
ratio (3/N) analysis for MRR (g min™") is carried out on
the basis of larger 1s the better option. The corresponding
S/N ratio 18 expressed as:

1 1
=-101 -y (M
™ Og”(n MRRZJ

1=1

The S/N ratio for MRR 1s shown m Table 4. It 1s
observed that voltage and electrolyte concentration both
has significant effects on MRR while depth of cut and
flow rate has marginal effect. The S/N ratio plot for MRR
is shown in Fig. 2.

The best combination for higher MRR is C3-V2-D3-F2.
The average of factor levels for MRR is shown in Table 5
which helps conclude the aforementioned parametric
combinations for optimum result. Table 6 shows the
ANOVA results for MRR.

The S/N ratio findings are also corroborated by
ANOVA results as exhibited from F-values and %
contribution of the process varables.

Analysis of test results for Ra: The Signal to Noise ratio
(3/N) analysis for Ra (micron) is modeled on the basis of
smaller 1s the better. The corresponding S/N ratio 1s
expressed as:

The 8/N ratio for Ra is shown in Table 7. Tt is found
from delta-values of the process variables that voltage is
the most mfluencing parameter that governs Ra
considerably. The overall ranking 1s showed m Table 7.

The S/N plot for Ra is shown in Fig. 3. The best
combination for lower Ra 1s C3-V1-D2-F3. The average of
factor levels for Ra is shown in Table 8 to justify the
significance of various operational parameters and their
levels.

The findings of S/N ratio are supported by ANOVA
results shown in Table 9. The F-value of voltage stands
at healthy 9.685 having % contribution of 68.91 as evident
from ANOVA. The % contribution of depth of cut and
concentration are 11.98 and 16.86, respectively.

Multi-objective model using Grey relational analysis:
The main procedure of Grey Relational Analysis (GRA) is
firstly translating the performance of all alternatives mto
a comparability sequence. This step is called Grey
relational generating. According to these sequences, a
reference sequence (ideal target sequence) is defined.
Then, the grey relational coefficient between all
comparability sequences and the reference sequence is
calculated.

Finally, based on these grey relational coefficients,
the grey relational grade between the reference sequence

1 - .
n, =—10log,, (ERi) 2 and every comparability sequences 1s calculated. If a
ni= Ly .
=t comparability sequence translated from an alternative has
Table 4: §/N ratio table for MRR Table 7: 8/N ratio table for Ra
Level C v D F Level C v D F
1 -22.0029 -16.7020 -17.0464 -20.1764 1 10.1437 14.4719 10.7541 9.7188
2 -18.8432 -13.0165 -18.5693 -15.8763 2 6.8776 11.7402 11.8355 9.2670
3 -11.6032 -22.7308 -16.8336 -16.3966 3 12.5734 3.3825 7.0051 10.6089
Delta 10.3997 9.7143 1.7357 4.3001 Delta 5.6958 11,0894 4.8305 1.3420
Rank 1 2 4 3 Rank 2 1 3 4

Table 5: Sum of MRR 8/N ratios at each level of each factor

Factors
Level C v D F
-1 -66.0086 -50.1061 -51.1394 -60.5293
0 -56.5298 -39.0495 -55.7077 -47.6289
1 -34.8095 -68.1923 -50.5008 -49.1897
Total -157.3480 -157.3480 -157.3480 -157.3480
Table 6: ANOVA of MRR

Adjusted

Process Sum of mean
parameter  DOF  squares square F-value Contribution (%6)
c 2 170.555 85.2780 8.877 48.28
v 2 144.2%6 72.1480 7.510 40.84
D 2 5.377 2.6880 0.280 1.50
F 2 33.049 16.5250 1.720 9.35
Error 0 0.000 0.0000 -
Total 8 353.277 -
Error 4 38426 9.6065

Table 8: Sum of Ra 8/N ratios at each level of each factor

Factors
Level C v D F
-1 304310 43,4158 32.2624 29.1563
0 20.6329 35.2207 35.5065 27.8010
1 377202 10.1476 21.0152 31.8268
Total 88.7841 88.7841 88.7841 88.7841

Table 9: ANOVA for surface roughness (Ra)

Process Sum Adjusted Contribution
parameter DOF  of squares  mean square  F-value (%)

C 2 49.012 24.506 2.370 16.86

v 2 200.289 100.144 9.685 68.91

D 2 38.558 19.279 1.864 11.98

F 2 2.797 1.399 0.135 0.96
Error 0 0.000 0.000 - -

Total 8 290.657 - - -

Error 4 41.355 10.340 - -
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Fig. 2: 8/N ratio graph for MRR

15.0 c

125

_°

100 x===

% 75-

5.0-
I 5 3% % 2% g 25 8 3
&8 8§ 82 8 82 8 235 3 &8

L= = B ]

Fig. 3: S/N ratio graph for Ra

the highest grey relational grade between the reference
sequence and itself that alternative will be the best
choice.

If the range and unit in one data sequence of a
response parameter differ from the others then data
preprocessing in Grey relational analysis is required. If the
sequence range is excessively large and the standard
value 13 too high then the effect of some factors needs to

be ignored.
The process of transferring the original data
sequence to a comparable sequence 13 called

normalization. The orignal data are normalized mto the
range between zero and one. If higher value indicates the
better performance such as MRR then it 1s normalized as
per equation:

Yiijin[ i=1 2,...n]

1:1,2...n}Min[Y 1:1,2,...11}

y?

Y,

2

3)

%= Max[Y

y?

If lower value indicates better performance such as R,
then it is expressed as:

Max| Y.i=12,.n]-,

i—1,2,...n]—Min[Y. 1:1,2,...n]

11

“4)

X,

Max[Y

ii>

The grey relational coefficient 15 determined to
express the relationship between reference and actual
normalized experimental data. Reference data is the best

data which 15 expressed as X, The grey relational
coefficient can be calculated as:
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Y(Xoj,X1]):m[lfl,z,...mldj71,2,...1’1’1] (5)
Where:
Vi =[Xy =X,V =Min| Vi =12, n&j=1,2,.m |
and:
V.. = MaxLVij,i =12,.n&j= 1,2,...mj

18 the distinguishing coefficient that 1s defined in
the range between 0-1. Generally, the distinguishing
coefficient can be adjusted to fit the practical
requirements. The grey relational grade can be determined
as the average of the grey relational coefficients
associated with each response parameter. Tt can be
expressed as follows:

(6)

s

Y(X,. %)

oy ?

B |~

DX, %)=

1

Where m is the number of response parameter. In
relation to the present study, the two responses i.e., MRR
and Ra have got different level of importance. ECG
prmarily bemng a finishing operation, emphasis is given on
Ra rather than on MRR leading to an assignment of
biased weights to the 2 attributes. Tn this experimentation,
70 and 30% weights are assigned to MRR and Ra,
respectively. Generally, a high value of the grey relational
grade corresponds to a strong relation between the
reference data sequence and the comparative sequence.
As mentioned before, the reference data 1s the best
response of the experimental results.

Therefore, a higher value of the grey relational grade
means that the corresponding machining parameters are
closer to the optimal levels. In other words, the
optimization of machining parameters associated with the
complex multiple response parameters can be converted
into the optimal resolution of single grey relational grade.
Table 10 shows the results of grey relational coefficients,
grey relational grades and their ranks. The results show
that experiment number 8 has the largest grey relational
grade. So, it is expected that the machining parameter
setting of this experiment will fulfill multiple response
parameters optimization.

Determination of optimum machining parameters: In this
study, optimal machining parameters with considerations
of the multiple performance characteristics are obtained
and verified ANOVA for multiple performance
characteristics is carried out to investigate the prominent
variables that have sigmficant consequences. Table 11
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Table 10: Grey relational coefficients and grades

Normalizing Delta Grey coefficient
Expt.no. MRR Ra MRR Ra MRR Ra Grey grade  Rank
1 0.024605 0.990291 0.975395 0.009709 0.235221 0.986320 0.7610 3
2 0.154657 0.949691 0.845343 0.050309 0.261930 0.932949 0.7316 5
3 0.000000 0.399823 1.000000 0.600177 0.230769 0.538388 0.4461 8
4 0.126538 0.966461 0.873462 0.033539 0.255654 0.954277 0.7447 4
5 0.172232 0.683142 0.827768 0.316858 0.266012 0.688305 0.5617 7
6 0.045694 0.323036 0.954306 0.676964 0.239176 0.508365 0.4276 9
7 0.562390 0.956752 0.437610 0.043248 0.406719 0.941812 0.7813 2
8 0.827768 1.000000 0.172232 0.000000 0.635281 1.000000 0.8906 1
9 0.070299 0.783760 0.929701 0.216240 0.243962 0.763992 0.6080 3]
Table 11: ANOVA for multiple performances Table 13: Results of machining performance using the initial and optimal
Process Sum Adjusted Contribution machining parameters
parameter  DOF  of squares _mean square  F-value (%) Optimal machining parameters
C 2 0.050730  0.025351 4.2650 25.03 Initial machining
v 2 0.128020 0.064012  10.7700 63.22 parameters Prediction Experiment
D 2 0.019030  0.009518 1.6013 9.40 Setting levels C1-V1-D1-F1 C3-V1-D1-F3 C3-V1-D1-F3
F 2 0.004740  0.002370 0.4000 2.35 MRR (g min™!) 0.0670 0.5240 0.5170
Error 0 0.000000  0.000000 - - Ra (um) 0.1680 0.1570 0.1600
Total 8 0202500 - 17.0363 - Grey relation grade 0.7610 0.8904 0.8831
Error 4 0.023776  0.005940 - - Improvernent of the grey relation grade: 0.1204
Table 12: Response table for determination of optimum level setting 1
Factors  Level 1 Level 2 Level 3 ABS (max-min) Rank a 0.2 » Ay R R
c 0.6462 0.57799 07600  0.18201 2 06~ \ S —
v 0.7623 0.72800 0.4939 0.26840 1
D 0.6931 0.60480  0.5964 0.09840 3 4
F 0.6436 0.64680 0.6938 0.05020 4 g 0.2+
Total mean value of the grey relational grade is 0.6614 0 T T TS
Parameter levels

clearly shows that voltage (63.22%) and concentration
(25.03%) have pronounced effect on the multiple
performances. The grade corresponding to each control
factor at their levels are calculated as shown m Table 12
and subsequently, the overall mean 1s calculated. Then,
the absolute value which is the difference between the
maximum and minimum value of each factor considering
different levels of grey relational grade is computed as
shown in Table 12. The optimum level setting for the
control factor is selected corresponding to the maximum
value of the level of each factor of Table 12.

Total mean value of the grey relational grade 15 0.6614.
Figure 4 shows the grey relational grade graph where the
dashed line is the value of the total mean of the grey
relational grade.

The larger the grey relational grade, the better are the
multiple performance characteristics. However, the relative
umportance among the process parameters for the multiple
performance characteristics still needs to be known so
that the optimal combinations of the process parameter
levels can be determimed.

Confirmation test: Once the optimal level of the
machining parameters 1s selected, the final step 1s to
predict and verify the improvement of the performance
characteristic using the optimal level of the machining
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Fig. 4: Grey relational response graph

parameters. The estimated grey relational grade using the
optimal level of the machimng parameters can be

calculated as:
q

Wt (W W)

1=1

- M

Where:

Y., = Total mean of the grey relational grade

¥ = Mean of the grey relational grade at the optimal
level

= Number of the machining parameters that

signmficantly mfluence the multiple performance

characteristics

q

Table 13 shows the results of the confirmation
experiment employing the optimal machining parameters.
It is found that MRR increases by 045 g min~" and
improvement in the Ra is by 0.008 pM.

CONCLUSION

The present study attempts to optimize the machining
variables by combining grey relational analysis and the
Taguchi method while machining of alumina-aluminium
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TPC by ECG. The S/N ratio shows that high concentration
and low voltage augurs well for both high MRR and lower
Ra. Based on the results of analysis, it 1s concluded that
voltage and electrolyte concentration plays significant
role in governing high MRR and low Ra.

in the machining voltage encourages
decomposition potential to attain an optimum level
beyond which over potential adversely affects the MRR.
As the machining voltage increases, the current density

Increase

increases and more and more aluminum gets dissolved
mto the solution exposing Al,O, texture that results in
rough surface.

MRR follows an increasing trend with electrolyte
concentration owing to the fact that it facilitates more
aluminum to be iomzed into the solution. At the lowest
level of concentration, electrochemical disselution 1s low
hence, mechanical abrasion is predominant. With the
increase in the concentration the dissolution rate
mcreases. This causes the Al,O, texture to expose which
makes the surface rough. The other 2 variables namely
depth of cut and electrolyte flow rate are insignificant to
affect the responses.

The Grey relational analysis converts optimization of
the multiple characteristics into optimization of a single
function called grey relational grade which simplifies the
computation.

The grey analysis establishes the ranks of output for
different variables combinations. It 1s found that both
MRR and Ra improve considerably (as evident from
computational results) by using optimal machining
variables combinations. It 15 concluded that the Grey
relational analysis 18 a powerful method to study the
effects of different process wvariables on multiple
performance for complex process like ECG.
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