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Abstract: Stepped beams with elastic end supports have been extensively investigated due to their importance
in structural engineering fields, including active structures, structural elements with integrated piezoelectric
materials, shaft-disc system compoenents, turbomachinery blades and many other structural configurations. In
the present research, a mathematical modeling is proposed to determine the natural frequencies of a stepped
beams without the need to research with a large number of discretization elements and different kinds of meshes
within the domaimn. The mathematical modeling 1s proposed for stepped beams with elastic end supports. The
analysis is based on the classical Euler-Bernoulli beam theory. In comparison with the published literature on
the transverse vibration of single cross section change beams, there are relatively few works covering beam
vibration when there 1s >1 change mn the beam cross section. In the present study, the natural frequencies and
the mode shapes of beams with variable geometry or material discontimmnties are investigated. The mode shapes
of a beam with multiple step changes in cross section are discussed theoretically and experimentally. Numerical

results obtained by Fuler-Bernoulli beam theory are compared with experimental results.
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INTRODUCTION

A brief review of selected publications on transverse
vibration of beams with changes in cross section follows.
The frequency equation for a simply supported stepped
beam was derived by Taleb and Suppiger (1961) and
Levinson (1976). A numerical method to calculate the first
natural frequency of simply-supported beams was
presented by Heidebrecht (1967). Jang and Bert (1989%a, b)
were the first to derive the frequency equations for
vibrating stepped beams on classical supports. Vibration
analysis of stepped beams with one step cross section
change constrained by rotational and translational
springs at both ends was presented by Maurizi and Belles
(1993). De Rosa (1994) studied the vibration of a beamn
with one step change in cross section with elastic
supports at the ends.

Dong et al. (2005), presented a scheme to calculate
the laminated composite beam flexural ngidity and
transverse shearing rigidity based on first order shear
deformation theory. A stepped beam model was then
developed wusing Timoshenko’s
analytically predict the natural frequencies and mode

beam theory to

shapes of a stepped laminated composite beam. Numerical

methods for modal analysis of stepped piezoelectric
beams modeled by the Euler-Bernoulli beam theory was
studied by Maurim ef al. (2006).

The present study, presents the transverse vibration
of Euler-Bernoulli beams with discontinuous geometry
and elastic end supports. The natural frequencies and the
mode shapes of stepped beams are investigated.
Combinations of the classical clamped, pinned, sliding
and free types of elastic end supports are considered. The
first 3 frequency parameters of beams with two step
changes in cross section are evaluated for selected sets of
system parameters and types of end supports. The
proposed method can be extended to beams with any

number of step changes in cross-section.
MATERIALS AND METHODS

Mathematical formulation: According to Euler-Bernoulli
beam theory, the equation of a clamped-free uniform beam
1n transversal vibration 1s obtained by applymg the static
equilibrium equations to sum the forces and moments that
act in the beam. The differential equation for the free
transverse vibration of a slender beam is as follows
(Tnman, 2001):
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Where:

EI = The flexural rigidity (E is Young’s modulus of
the beam material and T is the cross sectional
area moment of mnertia)

P = The mass density

A = The cross section area

v (x,t) = The deflection of the beam

X = The spatial abscissa

t = The time

Equation 1 is simplified by assuming a separation of
variable solution of the form:
v(x,t)=X(x)T(t) (2)

By using Eq. 2 m Eq. 1, the equation of motion turns:

4 2
S EXG)_dT() (3)
dx'(x)  dt*(t)
Equation 3 can be rearranged as:
4 2
CEONTI
X c
By defining:
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Where:
P = The dimensional natural frequency
@ = The natural angular frequency

The general solution of Eq. 4 can be put in the form
(Tnman, 2001 ):

X(x)=B,sinpx + B, cospx +

(6)
B, sinh Bx + B, cosh px
Where:
X (x) = Represents the mode shapes of beam
B,-B, = The coefficients of general solution
L = The length of clamped-free umform beam

Based on the classical Euler-Beroulli beam theory,
the general solution of Eq. 6 was imposed for each
segment of a stepped beam which 1s the object of study
of this study, as shown in Fig. 1.
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Fig. 1: Stepped beam with multiple step changes in cross
section

InFig. 1, 0<x<L,1=1, 2, ..., n, nis the number of
segments of the beam, T, is the length of the ith segment
of the beam, kg, and kg, are rotational spring constants, k,
and ki, are translational spring constants, A is the cross
section area of ith segment and [, is the cross section area
moment of inertia. The general solution of the Eq. 4 for
each segment of the stepped beam in multiple steps 1s:

Xl (Xl ) = Bmdexl Sin B1X'1 + BdexII Cos B1X'1 +

Bmdexlll sinh B1X‘1 + BindexIV cosh BiX‘i (7)
0=x,=L;

Where:

I =1,2, ..n

n = The segment number of the beam

k = The number of mode shape

Bigerw = The indexes of the coefficients of Eq. 7

The mdexes of the coefficients of ith segment of the
beam can be expressed as follows:

IndexI =1+ 4(i—1), IndexII=2+4(i-1)
IndexIll =3+ 4(i— 1), IndexIV = 4+ 4(i—1)

(8)

The equation of mode shape, Eq. 7 contains four
unknown coefficients and one natural frequency for each
segment of beam. Hence, the solving of solution of Eq. 7
requires four boundary conditions for the ends and also,
four boundary conditions for each junction of segments
of beam.

The boundary conditions are obtained by examining
the deflection, the slope, the bending moment and the
shear force at each end of the beam. Besides the
boundary conditions, the solution of Eq. 1 requires two
initial conditions (in time) to be specified.

The eigenvalue problem must be solved for a
particular set of boundary conditions, resulting in
expressions for the eigenfimctions Xi,k (x) and
frequencies w that the structure can accommodate in free
vibration. The boundary conditions for the structural
system under consideration, Fig. 1 are as follows. At the
ends at x = 0. Bending moment:
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2
I, d X1(2X1) y dX, (%) ©)
dx; x,=0 dx, x,=0
Shear force atx =1.;
d'x
El, ﬁ =k X, (X1)‘X =0 (10)
dx; - !
x,=0
Bending moment:
d’x dX
pr, L5 l) i, FalX) (11)
an X :Ln dxn Xn:Ln
Shear force:
I, (x,) - X, (x, )
EI"T;}( N *—kTZTnX N (12)

The continuity conditions at the junctions are;
Deflection:

X)) =X)L p=2..n (13)
Ep-1=bp-1 =
Slope:
dx, (x,,) _ dX, (x,) (14)
dxp_l prlzl"pfl dxp =0
Bending moment:
d*X d’X
e IS
dXP?l x_ =L dX.p x, =0
n=17"p-1 14
Shear force:
X (x ¥ (x
Ipq p—13( p-l) _ 71}]# (]6)
dxp_l % =L dxp 2, =0
p—17"p-1 P

By applying the boundary conditions, Eq. 9-16 the
general solution, Eq. 7 leads to a system of homogeneous
equations for the unknown coefficients, B, .mgmm- 1
order to have non-trivial solutions, the determinant of the
resulting coefficient matrix must vanish.
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RESULTS AND DISCUSSION

The results for two different stepped beams are
presented in this study, one of the beams presents a
single step change in cross section. The other beam has
two step changes. Both beams are supported on elastic
ends. Numerical results for the first three natural
frequencies for different end support were compared to
available literature.

One step change in cross section: Table 1 and 2 show the
first dimensionless natural frequencies B,, of stepped
beam with one step change in cross section for several
supports, as shown in Fig. 2. The calculations were
carried out assuming a stepped beam with lengths equal
to L, = I, = L/2 and different moments of inertia ratio,
starting with I, = 0.1 (where the first segment of stepped
beam is ten times thicker than the second segment) and
finishing with I, = 10. The moment of inertia ratio is
I, =1/, whereI, is the moment of inertia of the first beam
cross section and T, is the moment of inertia of the second
beam cross section. The indexes used in B, indicate that
1 represents the first segment of the beam for kth natural
frequency:

Table 1: First dimensionless natural frequencies of a single stepped beamn
with elastic support in one end and free in other one

ﬁl,l
R=T R=T, =01 =1 =10
o w 0 0 0
500 o 0.34821 0.29263 0.22976
5 o 1.09088 0.91389 0.71583
0.05 o 2.17505 1.81072 1.38830
0 o 2.23550 1.87510 1.43628

Table 2: First dimensionless natural frequencies of a stepped beam clamped
(R, =T, =0 in one of end and with elastic support in other end

R, = ﬁl,l
T, Ry=T, TL,=01 TL,=05 L=1 L=5 L =10
0 oo 223550  2.00987 1.87510  1.56119  1.43628
0 500 223663 2.01208 1.87866  1.57413  1.45941
0 50 224656 2.03147 1.90954  1.67694  1.62735
0 5 233168 218730  2.13952 220142  2.20838
0 0.5 2770056 277289 287787  3.24695  3.40801
0 0.05 342543 3.83194 406910 456259 4.74954
0 0.005 388099 442004  4.65386  5.03687  5.20451
0 0 3.94537 450112  4.73004  5.09500  5.26124
km - kk:
Al
AL
ky, % § kp,
Ll

A\ 4
A

Fig. 2: Beam with one step change in cross section and
elastic end supports
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Bl,k — (17

~ 2
B« EI,
o, = —L
L pA,
Where, w, is the angular natural frequency. The
classical boundary conditions are shown n Fig. 3, where
R and T are the dimensionless flexibility parameters

related with the rotational and translational spring
constants, ky and ke, respectively as defined by Eq. 19:

Pl

(18)

El, _EL
1 ) 1 )
kg, L, kTlLl3 (19)
ElI El
R2 — 2 , T2 2 -
kg L, kp,L,
7]
7
7
5 e 5
by
e Clamped -free Pinned-free
J - R=0R=w R, =6 R, =
A T,=0,T,=» T,=0,T,=
-
1O
g
0
7 Sliding-free Free-free
/1 R,=0,R,= R, =% R,=®
T,=%,T,=x© T, =0 T,=0

Fig. 3: Types of classical elastic end supports
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In order to exemplify the relations present in Eq. 19,
Fig. 3 was added with the classical supports. The
clamped-free beam has the following dimensionless
parameters, R, = 0 and T, = 0 m the clamped end. In this
case, k;, and ky, are infinite. The same mathematic
marnipulation 1s applied to the free end but in this case R,
and T, are mfinite.

The first mode shape of uniform beams (Fig. 4a, c, ¢)
and of stepped beams (Fig. 4b, d, £ with I, = 0.1) under the
same conditions elastic supports are compared in Fig. 4.
The changing of boundary conditions is obtained by
varying the dimensionless flexibility parameters (R and T).
Figure 4a, b have supports ranging from pinned-pinned
(R, =9, T, = 0toR, = o, T, = 0) to free-free (R, =

o, T/ = otoR, = o, T, = ). Figure 4¢, d have
supports ranging from clamped-free (R, =0, T, =0toR,
=0, T,=c)to free-free (R, = «, T, = =toR, = <,

T, = <) Figure 4e, f have supports ranging from free-
free (R, = oo, T, = =R, = o, T, = o) to clamped-
clamped (R, 0, T, =0-R,=0,T,=0. As mentioned
previously, the stepped beams in Fig. 4 have I, = 0.1 that
is I, = 10T,. In this case, the first segment of stepped beam
has flexural rigidity higher than the second segment.

Two step changes in cross section: Table 3-5 show the
first 3 dimensionless natural frequencies of a two cross
section step change beam, i.e., with three different
segments. The beam lengths are L, = 0.200, L, = 0.300 and
L, = 0.500 m. The main dimensions related to cross section
depend on beam type, i.e., type 1 and 2 are rectangular
cross section beam and type 3 is circular cross section
beam displayed i Table 6.

0.020 1
0.015 4

0.039 (o)
0.02
0.01 4
& Z (.00
v v 0.00
-0.01
ond /T=T.= T,=T,=
0.02 R=R,=1R=R,=i
‘003 T T T T T T T T T 1
S TanTne n®R S
O oo CcC OO O —
x/L

Fig. 4: Types of classical elastic end supports:
beam
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a, ¢, e) 1st mode shape: Uniform beam; b, d, f) 1st mode shape: Stepted
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Figure 5 shows the dynamic behavior of first
three mode shapes of a stepped beam in three different

Table 3: First 3 dimensionless frequencies of a stepped beam with two step
changes in cross sections type 1

Typel
Classical o
supports R T Ry Ty [51 1 l31 2 [31 3
Clamped-ree 0 0 o o 1.66100 456222  7.84841
Free-free o e @ o 0 4.77621 7.91134
Clamped-sliding 0 0 0 2.20800  5.42355 862546
Clamped-inned 0 0 = 0 3806 7.04505 10.17390

Table 4: First 3 dimensionless frequencies of a stepped bearn with two step
changes in cross sections type 2

Type 2
Classical
supports R T R Ty [51 1 ﬁl 2 ﬁl 3
Clamped-free 0 0 = = 1.71452 5.16922 241405
Free-free e o oo 0 5.57601 9.51969
Clamped-sliding 0 0 0 = 257846 6.32019  10.26300
Clamped-pinned 0 0 oo 0 439742 843703 11.88250

Table 5: First 3 dimensionless frequencies of a stepped bearn with two step
changes in cross sections type 3

Type3
Classical -
supports R T R, T, [51 1 [51 2 ﬁl 3
Clamped-free 0 0 B B 1.50383  4.93207 9.42708
Free-free e B B 0 5.54988 9.59866
Clamped-sliding 0 0 0 e 242957  6.28097 10.18050
Clampedpinned 0 0 = 0 418529 850978 11.75500
Table 6: Different types of cross section
Types Cross section Dimensions
1 Rectangular with b; =0.005 m, by = 0.006 m
constant height and by = 0.009 m
2 Rectangular width h; =0.005 m, hy = 0.006 m
constant width and h; =0.009 m
3 Circular d; = 0.005m, d; = 0.006 m
and d; =0.009 m
157 3ud
2 1.0
£ 051 l
2 0.0 ‘
= 0.5+
‘l 0 T T T T T T T T T 1
157 @
¢ 1.043rd ‘
S 031 V\
2 0.0- st
<}
= 051
-1.0

. T T T T T T T T T 1
0.0 0.10.2 0.30.40.5 0.60.7 0.80.91.0
x/L

segments on classical supports. Figure 3a displays of
clear way the mode shapes of a clamped-free beam, i.e.,
with R = T = 0 for the clamped end and R = T = « for the
free end. In this case, the clamped end presents high
rotational and translational spring constants and the free
end presents non-null values.

In order to verify the accuracy of the adopted model,
two cylindrical beams were manufactured to be tested
a test rig. The beams were designed with only one step
change m cross section and were machined from
aluminum blankets as shown in Fig. 6. The aluminum
density and modulus of elasticity are approximately
p=2683 kg m and E = 68.11 GPa, respectively. The
assumptions of FHuler-Bernoulli beam model were
maintained because the ratio between the length of each
section and its diameter was set equal or less than ten.
The assumptions used in this model consider the beam:
Slender of linear, homogeneous and isotropic material,
such that the plane of symmetry of the beam 1s also the
plane of vibration and the rotary inertia and shear
In this case, it is
recommended to work with thin or slender beams and low

deformation were neglected.

frequency.

To sumulate free-free boundary conditions, a wire of
naylon was fixed to the ends of the beam and attached to
the ceiling. In order to measure, the natural frequencies of
the beams under study the beams were put in free
oscillation by using an mstrumented hammer. The
vibration signal of the beam was captured by the laser
vibrometer (Ometron, model VQ-500-D) and transmitted to
the signal analyzer as illustrated in Fig. 7.

5] ®
1.0 N
2 054/ 5
g 00477/~
£ 0.5 Ist
v -1.0
2 -1.5
= 2.0
-2.54
'3~0 T T T T T T T T T 1
1.5 7 (d)
% 1.093rd
o
= 0.5-
2
L
g 00T '
= 051
-1.0

T T T T T T T T T 1
0.00.1 0.2 0.30.40.50.60.70.8 0.9 1.0
x/L

Fig. 5: Comparison of the first 3 mode shapes of beams with three different segments on classical supports. The
classical supports correspond to: a) Clamped-free; b) Free-free; ¢) Clamped-pinned; d) Clamped-sliding. The
different segments are represented by solid line (1st segment), dashed line (2nd segment) and dash-dot

(31d segment)
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Table 7: Comparison between analytical and experimental results

Mode shape” Experimental” Numerical” Difference’ (%) Experimental™ Numerrical™ Difference™ (%)
1st 319 324 1.54 176 177 0.56
2nd 989 985 -0.41 544 545 018
3nd 1825 1835 0.54 092 1011 1.88

Natural frequencies (Hz): "L, =L/2; &; =22.10 mm, L, = L/2; ¢, = 16.32 mm; "L, =L/2; ¢, = 12.64 mm, L, =L/2; ¢, =9.10mm

(@)

A
12.64 9.10
v
A 4
L 248.88 P 248.88 N
0] A
A
22.10 16.32
A 4
A 4
248.88 248.88

P |
» (< |

Fig. 6: Representation of the dimensions (mm) of the
experimental beams

Fig. 7. Experimental beam, laser vibrometer and signal
analyzer

The sighal analyzer (SRS-Stanford Research Systems,
model SR 780) is able to receive and store a large number
of vibrometer signals m short time ntervals, allowing to
obtain the frequency spectrum. The resolution used to
obtain the frequency spectrum was 15.96 Hz and the
sampling frequency was 12,800 kHz. The impact tests
were performed with a modal hammer (Bruel and Kjaer,
model 8202). Three series of impact tests were performed
along the length of the entire structure and final results
were obtained from an average of the trmals: Resonant
frequencies were obtained by average of 10 recorded
unpacts applied m three different locations of beam.
Figure 8 and 9 show the frequency spectrum of the
studied beams. Figure 8 refers to stepped beam sketched
m Fig. 6a. Figure 9 refers to stepped beam sketched
in Fig. 6b.
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Fig. 8 Frequency spectrum of the stepped beam of
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Fig. 9:Frequency specttum of the stepped beam of
Fig. 6b

Table 7 compares the three first natural frequencies
obtained experimentally and numerically. The results
show good agreement, since the relative differences
are small.

CONCLUSION

This study presents, Euler-Bernoulli beam theory in
order to evaluate the natural frequencies and the mode
shapes of stepped beams in multiple parts. The proposed
method 1s applicable to beams with any number of
changes in cross section, different geometries and on
classical and/or elastic supports. Numerical sumulations
were carried out to illustrate beams with one and two step
changes m cross secton The first three natural
frequencies of 3 types of beams (of rectangular and
circular cross section) on classical combinations of
supports are tabulated in Table 4-6. In order to verify the
accuracy of the adopted model, experiment verifications
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were made to validate the numerical results. The
comparison between calculated and measured frequencies
is shown in Table 7 and it shows good agreement, since
the relative differences are small.
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NOMENCLATURE
A = Area cross section (n?)
B = Coefficient of the general solution of Eq. 4
b = Height of the rectangular cross section (m)
cos = Cosine
cosh = Hyperbolic cosine
d = Diameter of the circular cross section (im)
didx = Spatial derivative
d/dt = Time derivative
E = Young’s modulus (GPa)
EI = Flexural rigidity (GPa.m®)
f = Measured natural frequency (Hz)
h = Width of rectangular cross section (im)
i = Locates the segment of the stepped beamn
indexT-Tv = Indexes of the coefficients of the general solution of Eq. 8
I = Area moment of inertia (m*)
I = Relation between adjacent moments of inertia
L = Length of the bearn (m)
n = Number of segments of the beam
kg, = Rotational spring constant (N/m)
kr = Translational spring constant (N/im)
k = Number of mode shape
R = Dimensionless flexibility parameter inversely proportional
to kg
sin = Sine
sin h = Hyperbolic sine
T = Dimensionless flexibility parameter inversely proportional

to kg
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Function of time

Time (sec)

Deflection of the beamn (m)

Mode shape

Spatial abscissa

Calculated dimensional natural firequency (1/m)
Calculated dimensionless natural firequency
Mass density kgm™)

Natural angular frequency (rad sec™)
Diameter of the experimental beam (mm)

&1
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