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Abstract: This research proposes a dynamic initial temperature for Simulated Annealing (SA) to solve a problem
of curriculum-based course timetabling. Initial temperature setting is an important factor that affects the
performance of the SA where very lugh mitial temperature will lead SA to accept any solution whilst the lower
value leads SA to quickly trap in local optima which behaves as a descent heuristic. Unfortunately, different
initial temperature is required for each instance to ensure that SA can perform well. Therefore, researchers
propose a dynamic mechanism to initialize the initial temperatures according to some solutions for each
mstance. Given the feasible imtial solution, the SA starts several iterations and calculates the deviations
average where the deviation equals the difference between the current objective value and the new one. Using
this average, the mechanism will decide the initial moderate temperature according to the SA acceptance
criterion ratio that we examine in the extermination. A computational result shows the effectiveness of the
proposed mechanism to dynamically mitialize the mitial temperature compared with the fixed mitial temperatures.
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INTRODUCTION

Timetabling 1s defined as the allocation, subject to
constraints of given resources to objects being placed in
space-time in such a way as to satisfy as nearly as
possible a set of desirable objectives (Wren, 1996). Many
researchers have focused on solving this problem using
many algorithms, such as ant colony optimization (Eley,
2007), evolutionary search (Beligiannis ef al., 2008) and
Simulated Annealing (SA) (Aycan and Ayav, 2009). This
research focuses on solving umiversity course timetable
problem that involves scheduling a set of courses within
a given number of rooms and time periods using
Simulated Annealing algorithm (SA).

SA 18 one of the most popular meta-heuristic
algorithm that have been used to solve many kinds of
computational optimization problem including job
schedulmg (Kolonko, 1999), course timetabling
(Pongcharoen et al., 2008), examination timetabling (Azimi,
2005), communication systems (Salcedo-Sanz et al., 2004)
and travelling salesman (Cerny, 1985).

Simulated annealing algorithm has a strategy to
escape from local minima by accepting worse solution

using probability acceptance criteria. However, SA could
be trapped into local optimum which may consume longer
to find good solutions (Xinchao, 2011).

To avoid all these drawbacks, many researchers
have attempted to improve the simulated annealing
performance by wing for example, Adaptive
Simulated Annealing (ASA) (Ingber, 1996) or hybridize
SA with another heuristics, such as genetic algorithm
(Cordon et al., 2002).

The intention of this research is to improve the SA
performance by choosing good mitial temperature. Many
researchers presented ideas to solve the problem of
satisfying initial temperature. For example, Poupaert and
Deville (2000) proposed a rule of choosmg initial
temperature based on the initial acceptance ratio ¥, which
15 defined as the number of the bad transition that
accepted divided by the number of attempted bad
transitions and on the average increase in objective
function value. On the other hand, Zhang et al. (2010)
determined the initial temperature by starting with very
high temperature and then tried to derive the real start
temperature by using the functional dependence between
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Table 1: The differences between the dynamic initial temperature with others from the literature

Techniques First initial temperature Average (A)  Applying part Advantages Disadvantages
The technique Dynarmnic | 3‘ First LL iterations Avoid the first Need good chosen
Sirmulated annealing with Infinite high temperature cooling schedule
estimated ternperature |5‘ All (for each solution  Estimate the temperature Could trap in zigzag
(Poupaert and Deville, 2000) neighbors) for all iterations, the temperature walk during the
is not control parameter but temperature estimation
the acceptance probability
Solving the course scheduling 10000 |5‘ BRefore the algorithm  Try to choose a good first The initial temp erature
problem using simulate start (one time) initial temperature still high

annealing (Aycan and Ayav, 2009)

the starting acceptance probability ¥, (0.95 or 0.9) and the
temperature Ty, using Eq. 1 and 2 (Poupaert and Deville,
2000):

xu::x({span,8@+n,",am}),1@) (1)
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xu]n; p[TJ =
Where:
v, = The starting acceptance probability between
(60-80%)
T, = The starting temperature

o, = f(s)-f(sy)

The initial solution

8; = The new or neighbor solution of s,

The objective function for each solution
The neighbor solution space size

The idea of previous equations which proposed
and presented by Poupaert and Deville (2000) and
Zhang et al. (2010) still can initialize high temperatures
because it creates the initial temperature from the first
iteration using the first A.

This mechanism try to avoid the problem by
choosing good suttable mitial moderate for each
instance independently, by applying several iterations
and calculate the differences between the current
solution and the new one even it worse or not and
calculate the average to decide the initial temperature
according to the acceptance criteria ratio. Table 1
shows a comparison between the initial temperature
mechanism and others in literature.

CURRICULUM-BASED COURSE TIMETABLING

The curriculum-based cowrse timetabling problem
for the TTC-2007 consists of scheduling all lectures of
a set of cowses into a weekly timetable where each
lecture of a cowse must be assigned a period and a
room in accordance to a given set of constraints
which satisfies the hard constraints and minimizes the
soft constraints. The four hard constraints (H1-H4)
and four soft constraints (S1-S4) are defined as
follows (Gaspero et al., 2007):

59

»  HI1: All lectures of a course must be scheduled to a
distinct periods

+  H2: Two lectures cannot be assigned in the same
period and the same room

+ H3: Lectures of courses in the same curriculum or
taught by the same teacher cammot be scheduled in
the same period

»  H4: If the teacher of a course 1s not available at a
given period then no lectures of the course can be
assigned to that period

» S1: For each lecture, the number of students
attending the course should not be greater than the
capacity of the room hosting the lecture. Each
student above the capacity counts as 1 point of
penalty

+ 3520 All lectures of a course should be scheduled at
the same room. If this is impossible, the number of
occupied rooms should be as few as possible. Each
distinet room used for the lectures of a course but the
first, counts as 1 pomt of penalty

¢ 33: The lectures of a course should be spread into
the given minimum number of days. Each day below
the minimum counts as 5 points of penalty

* 54 For a given curriculum a violation 1s counted if
there 1s one lecture not adjacent to any other lecture
belonging to the same curriculum within the same
day which means the agenda of students should be
as compact as possible. Each isolated lecture in a
curriculum counts as 2 points of penalty

The hard constraints (H1-H4) must be satisfied to
obtain a feasible solution. However, soft constraint
can be violated if necessary. The quality of the timetable
(penalty cost) 1s calculated by summing all violations of
soft constraints (S1-34).

THE SIMULATED ANNEALING

Initial solution phase: This research starts by generating
the mitial solution using sequential greedy heuristic as by
Lu and Hao (2010). There is no proof that this greedy
heunstic guarantees to find feasible solution (Lu and Hao,
2010). So, researchers will use steepest decent heuristic to
rectify the solution until they get the feasible solution.
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Table 2: Percentages of SA acceptance criterion among different temperatures and penalty costs (best result out of 10 rmuns for each range)

The initial temperatures

IAfl 1077 (%) 10 (%) 10000 5000 (%) 2000 1000 (%) 500 100 (%) 10 (%) 1

150 100 100 99.0 95.8 943 85.5 71.5% 274 0.0 0.0
50 100 100 99.0 98.9 97.6 955 88.3 28.9 0.0 0.0
5 100 100 99.9 99.0 99.0 99.9 97.5 94.9 70.5 0.0

Table 3: The initial temperature selection
Deviation average (v)

Initial temperature (Ty)

250 Randorm (1000, 2000)
5449 Random (500, 1000)
1-4 Random (100, 500)

Simulated annealing phase: Simulated annealing
optimizes the given solution using probability accepting
criterion as a mechansm to escape from local optimum by
accepting worse solutions. SA algorithm mechanism
accepts neighbor solution, $* when it penalty cost is
lower than or equal to the curmrent one s. There is a
possibility to accept neighbor solution that has hgher

penalty cost using probability acceptance criterion:

af
T

p(x)=e

Where, Af = f(3*)-f(s) with f(s) and f(s*) is the
penalty costs of solution s and s*, respectively and T, the
current temperature. T, 1s reduced according to a cooling
schedule with given cooling rate, ¢ for each iteration or
level until this temperature reaches final minimum
temperature closed to zero T,

The SA starts with imtial feasible solution generated
by the constructive part. Then, the neighborhood
structures (simple move and simple swap) will be applied
to generate several feasible neighbors to the current
solution. The best neighbor solution s* among them will
be accepted if the cost is better than or equal to the
current one. Otherwise, 8* will be accepted based on the
probability p(x) or will be accepted 1f:

Where, p(x) 13 a random number between 0 and
1. The next part explains the main contribution to
answer the followmng question: How to choose the
best initial temperature?

The dynamic initial temperature: Normally when the
temperature 1s very high, the range of accepting worse
solutions is very high as well. Let say, researchers have
a current solution (s) with penalty cost {(s) equals 2000
and neighbor solutions (s*) with f(s*) equals 2150, 2050

and 2005. The question is: What percentage will SA
accept those worse solutions when the temperature is
very high, very low and medium?

The high temperatures will let SA to accept
any worse solutions. Therefore, there is no point
using simulated amnealing when the temperature 1s
very high. Therefore, researchers propose a new
technique (a dynamic mitial temperature SA (SA-D)) to
avoid this problem.

In order to estimate the suitable range of accepting
worse solution at early stage, researchers perform a
preliminary experiment (Table 2 and 3). In this research for
several iterations, SA decides the initial temperature
amount according to the penalty values deviation average
v (Eq. 3 and 4):

Ay = i\Af\ 3)

Where, Af = f(s*)-f(s) and n is the total current
iterations:

y=2 (4)
n

Using this technique, researchers will avoid the
wasting computation time by choosing good mitial
temperature.

Let initial solution (s,1); initial cost f(s ]); set best
solution (s,1%*-s,1); the current temperature (T,); minimum
temperature (T,.); dynamic imtial temperature (T,);
initial dynamic temperature iterations (k). The SA with
dynamic mitial temperature pseudo-code 1s presented in
Fig. 1.

The SA algorithm that 1 applied involves:
Neighborhood structure, temperature, cooling schedule
and aspiration criteria.

SA  parameters conclude; temperature, plateau
length (L) where the temperature will decrease using
cooling schedule (T, = T, *a) where ¢ = 0.99 and
stopping criterion. In this research, the algorithm
stops in three cases or at least reach one of them
when the mimmum temperature (T_) closed to zero
(frozen stage) (T, = 0.0001), number of iterations or
CB-CTT problem ITC 2007 timeout condition. For the
neighborhood  structures, apply  simple
move and simple swap.

researchers
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Seti=1;

them (NSol)
Af =f{NSol} - f{Sol)
Tar =IAfl + Tar
L
i

Y=

if i<k then
Select T, according to Table 3
end if
IHAf=0
Sol =NSol
Sol* =NSol
Else

Af
if(e T >RAND then
Sol = NSol
end if’
endif

Do while (termination criteria does not met)
Apply neighborhood struchures {N1, N2} for the Sol and calculate the best costs function among

Create € random number called RAND between [0, 1];

Apply the cooling schedule to update the temperature;

Fig. 1: A pseudo-code for SA with dynamic imtial temperature (SA-D)

Simple move: Move one lecture of cowrse ¢ from the
current period to another free position period; the size of
this neighborhood is five.

Simple swap: Swap one lecture chosen randomly by
another one random lecturer that belongs to two different
courses, periods and rooms, the size of this neighborhood
1s five.

EXPERIMENT AND RESULT

In this study, researchers test their research in 21
competition instances from The Second International
Timetabling Competition track 3: Curriculum-based course
timetabling (<http:/faraw . cs.qub.ac. uk/itc2007/>).

The main purpose for this experimentation is to
compare the proposed mechanism to mitialize the
mitial temperature with the fixed one. Researchers
compare the temperature with initial temperatures
applied by previous researchers (Table 4). For thus
comparisor, the cooling rate (¢ = 0.99), the number of
iterations equal 40,000 iterations for each run and for
each temperature will use different plateau length (L)
where the temperature decreases, in order to arrange
the decrement among them.

Table 5 summarize the comparison results to the
proposed dynamic initial temperatures and others fixed
initial temperatures (Aycan and Ayav, 2009; Goffe et al.,
1994). The first column mdicates the instances, columns
2-6, 7-11 and 12-16 reports the best solution, mearn,
median, standard deviation and the best solution time 1n

&1

Table 4: List of initial terperatures used by other researchers

Researchers Intial temperature
Aycan and Ayav (2009) 10000

Goffe et al. (1994) 107

seconds over 30 runs to each instance. For these
experimentations, researchers apply the standard
simulated annealing (Eglese, 1990).

In Table 5 that the high temperature takes more
time to achieve the solution than the dynamic initial
temperature achieved before. The average solutions
costs over 21 runs showed that the temperature leads
the search to reasonable results and outperforms the
other temperatures.

For mstances in Comp 1 and 11, the optimal solution
15 found by using the dynamic imtial temperature (run
under the ITC 2007 timeout condition) where the other
results are comparable to other approaches (perhaps it
needs more computation time).

Table 6 summarizes the comparison results between
the proposed research with the best known results
under ITC 2007 timeout condition. The first column
indicates the mstances, columns 2-3 report the penalty
cost of this research and the best known. Therefore, one
can observe that the SA-D best results are quite
comparable to the best known results.

Table 6 showed that this research reached the best
optimal results m Comp 1 and 11 while the other instances
results found to be quite far from the best
foundsolution. However, the aim 1s just to show that the
proposed dynamic mitial temperature is better than the
static mitial temperature.

1s
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Table 5: Comparison of the best, average results and average runs time of sa performance using the dynamic initial temperature and the initial temperature

value proposed by Aycan and Ayav (2009) and GofTe ef ad. (1994)

Goffe et al. (1994)

Aycan and Ayav (2009)

The dynamic initial temperature

Instance  Best Mean Median STD Time (sec) Best Mean Median STD Time (sec) Best Mean Median STD  Time (sec)
Comp 1 7 9.00 8 2.03 282 5 832 8 2.06 280 5 5.0000 5.0 0.00 230
Comp 2 172 18537 188 7.04 415 171 180.89 182 16.61 413 160 169.6600 167.5 7.79 400
Comp3 119 133.00 134 9.71 436 119 134.21 136 9.08 434 112 1282500 1290 8.23 423
Comp 4 72 8347 84 6.76 445 73 81.74 85 18.85 448 57 79.0000 79.5 8.00 443
Comp 5 334 347.84 349 7.20 413 330 34911 351 8.03 412 318 3442500 3460 14.78 403
Comp 6 96 11568 120 11.32 405 97  113.59 110 11.47 398 87 1138460 1160 16.29 378
Comp 7 56  77.58 83 13.57 431 53 T2.00 73 11.94 427 42 55.5960 55.5 7.37 421
Comp 8 67  80.68 80 8.46 353 65 75.95 75 771 343 65 78.5660 78.0 6.73 323
Comp @ 152 174.89 179 10.20 465 153 16416 164 8.08 460 150 165.6600  166.0 8.77 456
Comp 10 48  62.11 57 10.88 454 46 5879 58 715 454 34 47.1566 47.5 6.58 448
Comp 11 1 1.26 1 1.28 230 0 1.32 1 0.95 226 0 0.0000 0.0 0.00 213
Comp 12 484 49484 492 8.72 458 488  493.69 493 6.58 459 460 4738100 4740 8.42 454
Comp 13 107 127.58 132 9.48 441 108 125.26 126 8.05 440 100 1224400 1255 11.55 421
Comp 14 90 119.53 124 15.26 368 89  106.32 103 10.12 368 89 1061600  106.5 9.29 366
Comp 15 133 14637 149 9.07 444 132 141.68 142 572 442 121 131.1300 131.0 5.96 432
Complé 76 8584 89 6.57 402 77 86.16 86 5.54 378 69 77.4100 71.5 6.13 367
Comp 17 112 124.05 124 8.22 380 112 123.74 126 8.19 375 137 124.9100 127.5 10.90 366
Comp 18 118 130.47 132 9.04 464 117 136.63 138 10.68 463 152 1313100 1325 12.78 450
Comp 19 109 127.21 127 11.11 468 109 120.84 132 10.73 464 110 113.1600  114.5 7.86 450
Comp 20 67  80.95 79 9.37 460 69 80.05 79 10.33 466 82 79.8800 81.0 6.16 454
Comp 21 139 14847 146 6.64 404 132 14716 148 791 370 152 142.8700 142.5 8.40 367
All the values are the penalty cost
Table 6: Best results of SA with dynamic initial temperature (SA-D) 3000 o (100000000)
compared to best known results on curriculum-based course 2500
timetabling ITC 2007 Track 3 —— Cost (10000)
Instance SA-D Results Methods o 2000
Comp 1 5 5 Tabu search S Cost (Dynamic)
Comp 2 160 24 SAT-Modulo-Theory o 1500
Comp 3 112 66 Local search = 1000
Comp 4 67 35 Local search ]
Comp 5 318 200 Simulated annealing 500
Comp 6 87 27 SAT-Modulo-Theory W
Comp 7 42 6 SAT-Modulo-Theory 0
Cormp 8 65 37 Other 0 10000 20000 30000 40000
Comp 9 150 96 Tabu search Penalty costs
Comp 10 34 4 SAT-Modulo-Theory
Comp 11 0 0 Tabusearch Fig. 2: Behavior of SA-D compared to SA that use a static
Comp 12 460 300 Simulated armealing .
Comp 13 100 59 Tabu search mutial temperature for Comp 1
Comp 14 89 51 Mathematical programming
Comp 15 121 66 Tabu search 6000 -,
Comp 16 69 18 SAT-Modulo-Theory —— Cost (100000000)
Comp 17 137 56 SAT-Modulo-Theory 5000 -
Comp 18 152 62 Hybrid method o ool — &= (10000)
Comp 19 110 57 Local search 5 Cost (Dynamic)
Comp 20 82 4 SAT-Modulo-Theory ® 3000
Comp 21 152 75 Simulated annealing E
2000
Figure 2 and 3 show the behavior of SA-D compared 1000
to SA that use a static initial temperature (for Comp 1 and 0
4 nstances). 0 10000 20000 30000 40000
Figure 2 and 3 showed that using high temperatures Penalty costs

causes the search to accept worse solutions which are
very far from the current solutions which will consume
longer processing time. Although, the proposed
mechamsm still leads the search to accept worse solutions
but 1t 18 not very far from the current solutions. Therefore,
the processing time will be shorter and faster.

Based on the observed results in the comparison,
researchers can conclude that the amount of the initial

62

Fig. 3: Behavior of SA-D compared to SA that use a static
initial temperature for Comp 4

temperatures must be chosen carefully. The temperature
must be moderate and within good range according to the
search space improvement for each instance (problem)
independently.
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CONCLUSION

This study proposed a dynamic imtial temperature to
simulated annealing algorithm for curriculum-based
cowrse timetabling problem; from the experimentation
results reported in this study, researchers can attempt to
draw several conclusions.

The proposed dynamic imtial temperature can
provide less computational time with good solution
quality comparing with high and low fixed initial
temperature with some enhancement to the cooling
schedule the solutions can be better.

The search space for each instance is different, so the
initial temperatures and cooling schedules should be
chosen carefully. Using high temperatures in the small
mstance dataset will waste the computational time. On the
other hand, low temperature to large instance will lead the
search to get trapped very fast in local optimum.

RECOMMENDATIONS

In future research, researchers suggest applying
median cooling schedule with the proposed dynamic
mitial temperature, n order to prevent the search from
getting trapped in local optimum which may cause longer
computational time. Therefore, good cooling schedule will
make the temperature more worthy rather than using high
or low temperatures with slow or fast cooling schedule.
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