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Efficient Quadrature Solution for Composite Plate Problems
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Abstract: The efficiency of different moving least square differential quadrature techniques are examined for
solving bending plate problems. Based on a transverse shear theory, the governing equations of the problem
are derived. The transverse deflection and two rotations of the plate are independently obtained using moving
least square approximations. The weighting coefficients for quadrature approximations are derived by three
different techniques. For each one the accuracy and efficiency of the obtained results are examined. As well
as the obtained results are compared with the previous analytical and numerical ones. Further, a parametric
study is introduced to investigate the effects of elastic and geometric characteristics on the values of stress
and transverse deflection of the plate.
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INTRODUCTION for solving plate problems. This method own the

Composite plates have been extensively preferred problems as well as irregular domains. Direct application
materials in marine, mechanical, civil, nuclear and of MLSDQM go through some computational
aerospace structures. Bending analysis for such complications with determination of partial derivatives of
composites is one of the most important problems in the  field  quantities  (Bui  et  al.,  2011;  Ragb  et  al.,
structural design. Due to the mathematical complexity of 2014).  Later,  Wen  and  Aliabadi  (2008,  2012)  proposed
such problems, only limited cases can be solved two alternatives to overcome this difficulty. The first one
analytically (Wang et al., 2001; Zenkour, 2003; indirectly evaluates second and higher order derivatives
Timoshenko and Woinowsky-Krieger, 1959). Numerically, of the MLS shape functions at field points as much as
finite difference, finite element, point collocation, first derivatives are obtained. The second proposal is to
boundary element and  discrete singular convolution apply MLS approximations over a finite difference grid
methods  have  been  widely  applied  for  solving,  such such that second and higher order derivatives, at the
plate  problems (Mukhopadhyay, 1989; Tu et al., 2010; interior nodes can be approximated using central finite
Hrabok and Hrudey, 1984; Liew et al., 1998; Gupta et al., difference schemes.
1995; Tanaka et al., 1994; Tanaka and Bercin, 1998; The present research examins accuracy and efficiency
Civalek, 2007, 2009). of the earlier three mentioned MLSDQ techniques for

The main disadvantage of such techniques is to bending problems of irregular composite plates. The
require a large number of grid points as well as a large composite is made of a Functionally Graded Material
computre capacity to attain a considerable accuracy (FGM). The equilibrium equations are written according to
(Vanmaele et al., 2007; Belytschko et al., 1996a, b; Liew a transvers shear theory. The weighting coefficients for
and Huang, 2003; Huang and Li, 2004; Jafari and Eftekhari, the approximated field quantities over the entire domain
2011; Wang and Wu, 2013). are obtained using MLSDQ technique. The second and

In seeking, a more efficient technique that requires higher order derivatives are approximated using direct,
fewer grid points and achieves acceptable accuracy indirect and  finite difference schemes. For each selection,
(Lanhe  et  al.,  2007;  Liew  et  al.,  2002,  2004,  2003, 2011; the accuracy and efficiency of the obtained results are
Zhu et al., 2014; Zhang et al., 2014) introduced Moving examined. As well as  the obtained results are compared
Least Square Differential Quadrature Method (MLSDQM) with the previous analytical and numerical ones. Further,

capability to deal with discontinuty, composite plate,
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a parametric study is introduced to investigate the effects
of elastic and geometric characteristic of the problem on
the values of obtained results.

MATERIALS AND METHODS

Formulation of the problem: Consider a non-
homogeneous  composite  consisting  of  an  isotropic
plate    bonded    (along   x-axis)   to   another   one  made
of   a   FGM.  The  elastic  characteristics  of  the
composite vary such that:

(1)

Where:
G = Shear modulus of the isotropic plate
E = Young’s modulus of the isotropic plate
v = Poisson’s ratio of the isotropic plate
G = Shear modulus of the FG platef

E = Young’s modulus of the FG platef

v = Poisson's ratio of the FG platef

( = Constant characterizing the composite gradation

Assume that the composite is subjected to a pure
bending due to a laterally distributed load q (x, y ). Based
on a first-order shear deformation theory, the equilibrium
equations for such composite thin plate can be written as
(Panc, 1975):

(2)
Where:
M  (i, j = x, y) = Bending and twisting moment resultantsij

Q  (i = x, y) = Shearing force resultantsi

The transverse deflection w (x, y) and the normal
rotations n  (x, y), n  (x, y) are related to the moment andx   y

shear resultants through the following constitutive
relations (Reddy, 1999):

(3)

(4)

where, D = Eh /12 (1-v ) and h are the Flexural rigidity and3  2

the thickness of the plate. The k is the shear correction
factor which is to be taken 5/6 (Reddy, 1997, 1999). On
suitable substitution from Eq. 3 and 4 into Eq. 2, the
equilibrium equations can be written as:

(5)

(6)

(7)
Where:
( Ö 0 = FG part
( = 0 = For isotropic one

According to the case of supporting, simply
supported and clamped edge, the boundary conditions
can be described as:

Simply supported:

 (8)

  (9)

Clamped:

(10)

Where:
n = The subscripts represent the normal

and tangent
s = The subscripts of the directions to the

boundary edge
M , M  and Q = Denote the normal bending moment,n  ns  n

twisting moment and shear force on
the plate edge

n  and n = The normal and tangent rotationsn  s

about the plate edge

The continuity conditions (along the interface), must
be also satisfied such that:

(11)
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Which  means  that  the  deflection  and  moments
(along the interface) of isotropic and FG plates must be
equaled. 

Further, the force resultants and the rotations on the
edge can be expressed in terms of the basic unknowns nx

and n  as follows (Reddy, 1999, 1997):y

(12)

(13)

(14)

(15)

(16)

where, n  and n  are the direction cosines at a point on thex  y

boundary edge.

Solution of the problem: The employed MLSDQ
techniques can be summarized as follows: descretize the
domain of the problem, S, into a finite number of nodes:
{X = (x , y ), i = 1, N}. Each node is associated with threei  i  i

nodal unknowns (w, n  and n ). The influence domain forx  y

each node is determined as shown in Fig. 1. Over each
influence domain, (S , i = 1, N), the nodal unknowns can4

be approximated as Liew et al. (2002, 2003, 2004):

(17)

where, n is the number of nodes within the influence From which:
domain, S . The D  = {w , n , n } approximate values for4      x  y

h  h  h  h

nodal unknowns w, n  and n , respectively. The N  (x , y )x  y    j i  i

is defined as the shape function of MLS approximation
over the influence domain (S , i = 1, N).4

The nodal parameters: {w , n , n } are always noti  i  i
x  y

equal to the physical values{w (x, y), n  (x , y ), n  (x , y )},i  i  x i  i  y i  i

since the MLS shape functions N  (x , y ) do not satisfy thej i  i

Kronecker delta condition generally. Apply  the  MLS
technique  to  approximate  u  (x)  to u (x) for any x0S suchh

as (Lancaster and Salkauskas, 1981; Breitkopf et al., 2000):

(18)

where, a (x) = {a  (x), a  (x),... a  (x)}  is a vector of1  2  m
T

unknown coefficients. The P  (x) = {p  (x), p  (x),..., p  (x)}T
1  2  m

is a complete set of monomial basis. The m is the number

Fig. 1: Domain descretization for moving Least Squares
Differential Quadrature Method

of basis terms. The coefficients a  (x), (j = 1, m) can bej

obtained at any point x by minimizing the following
weighted quadratic form:

(19)

Where:
n = Number of nodes in the neighborhood
x and u = Nodal parameter of u (x)i

At point x§  (x) = § (x-x) is a positive weight functioni i    i

which decreases as  increases. It always takes unit
value at the sampling point x and vanishes outside the
domain of influence of x.

The stationary value of A (a) with respect to a (x)
leads  to  a  linear  relation  between  the  coefficient
vector a(x) and the vector of fictitious nodal values u such
as:

(20)

(21)

Where:

On suitable substitution from Eq. 21 into Eq. 19, u  (x)h

can then be expressed in terms of the shape functions as:

   (22)

Where the nodal shape function:
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(23)

It should be noted that the MLS shape function and
its derivatives are dependent on the weight function and
the  radius  of  influence  domain.  It’s  also  required  that
n$m in the domain of influence so that the matrix A (x) in
Eq. 22 can be inverted (Reddy, 1999, 1997). Determine the
MLS shape functions N  (x , y) and its partial derivativesj i  i

as proposed by Belytschko et al. (1996a, b) where:

(24)

Since, A(x) is a symmetric matrix, then Eq. 24. For the
partial derivatives of N  (x , y ), (one can employ) yields:j i  i

(25)

Therefore,  the  problem  of  determination  of  the
shape function is reduced to solution of Eq. 25. This
Equation can be solved using LU decomposition and
back-substitution which requires fewer computations than
the inversion of A(x). The following techniques:

Direct technique: The first and second order partial
derivatives of N  (x , y) can be determined as in Liew et al.j i  i

(2003): differentiate Eq. 26 with respect to I, J, (I, = x, y)
such as:

(26)

(27)

The first and second order partial derivatives of the
shape function can be described as:

(28)

(29)
Indirect technique: The first order partial derivatives of
the shape function can be obtained as in Eq. 26 and 28,
where:

Fig. 2: Grid descretization for the hybrid technique
consisting of FDM and MLSDQM

(30)

The second order partial derivatives can be
determined, using matrix multiplication approach (Shu,
2000) such that:

(31)

Finite difference technique: The first and second order
partial derivative of the shape function can be
approximated over a finite difference grid (Wen and
Aliabadi, 2012) with mesh side h  as shown in Fig. 2.m

(32)
A suitable linear interpolation must be applied to

modify Eq. 32 for the intermediate points, (resulting from
domain irregularities) as shown in Fig. 2.

On suitable substitution from Eq. 28-31 into the
governing Eq. 5-7 the problem can be reduced to the
following system of linear algebraic equations:

(33)

(34)
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(35)

Also on suitable substitution from Eq. 32 into the governing Eq. 5, 6, 7, the problem can be reduced to the following
system of linear algebraic equations:

(36)

(37)

(38)

The boundary conditions can also be reduced to the following linear algebraic equations.

Simply supported:

(39)

(40)

Clamped:

(41)

Along, the interface the following algebraic equation must also be considered:

(42)

Where, N  is the number of nodes along the interface.1

RESULTS AND DISCUSSION

For the present results, Gaussian weight function
with a circular influence domain is adopted for the MLS
approximation such as:

(43)

where,    is  the  distance  from a nodal
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Fig. 3: Skew rhombic plate

x  to a field x in the influence domain of x . The r is thei          i

radius of support domain and c is the dilation parameter
In the present research, the dilation parameter is selected
such as: c = r/4. Also, a scaling factor d  is defined as:max

(44)

where, h  is the grid size which can be regarded as them

distance between the nodal point x  and the secondi

nearest neighboring field nodes. For regular node
arrangement spaced by $, h  can be taken as:m

For squared plates, the numerical results are
normalized such as Liew et al. (2003):

(45)
As  well  as for skew rhombic plate shown in Fig. 3,

the numerical results are normalized such as Liew et al.
(2003):

(46)
Where:

= Normalized deflection, moments and stresses
a = Composite width
D = Flexural rigidity of the isotropic plates

A numerical scheme is designed to investigate the
influence of computational characteristics, (radius of
support domain r, completeness order of the basis
functions N  and scaling factors d ) on accuracy of thec    max

obtained results. The boundary conditions (28-31) are
directly substituted into equilibrium ones (26 and 27). The
reduced system is solved using MATLAB. The problem
is solved over a regular grid with N  = (7, 25). For different1

boundary  conditions,  Table  1  shows  that  the  results
for N  = 11 are nearly the same, as those corresponding to1

N  = (13, 25). Therefore, the parametric study is introduced1

over grid 11×11 nodes.

Fig. 4: Variation  of  the  results  with  the  radius  of
support domain and completeness order for a
regular descretized clamped-clamped plate (N  =1

11); (Redddy, 1999, 2002; Timoshenko and
Woinowsky-Krieger, 1959)

Table 1: Comparison between the obtained bending moment and the
previous analytical ones at the centre of a simply supported squared
plate

No. of Obtained results (Support radius)
grid ----------------------------------------------------------------
nodes Exact  r = 5.5 r = 6 r = 6.5 r = 7*

6×6 0.47886 0.51503 0.520080 0.509190 0.49623
11×11 0.47886 0.47767 0.479290 0.477135 0.47845
16×16 0.47886 0.47902 0.476785 0.478440 0.47819
21×21 0.47886 0.47784 0.478620 0.478940 0.47786
Reddy (2002) and Timoshenko and Woinowsky-Krieger (1959)*

Also, the completeness order N  of the interpolationc

basis ranges from 2-7 with various scaling factors dmax

from 2-10 as shown Fig. 4-6. It is found that d $N +0.5 ismax c

required for reasonable numerical solutions. This was
previously recorded by Liew et al. (2004). For irregular
discretizations, the discrete nodes inside the plate are
randomly generated while the boundary nodes are still
equally spaced. For regular and irregular discretizations,
Fig. 4-6 show that the accuracy of the obtained results
increases with increasing both of N  and the radius ofc

support domain while it decreases with increasing of the
grid size h  for different values of plate thickness h. Thism

result exactly agrees with that recorded in Liew and Han
(1998).

For regular discretizations, Fig. 4 shows that one can
select  N   =  4  and  d $5  to  obtain  accurate  results.c        max
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Figure  5  and  6  show  that  for  irregular  discretizations, To examine the validity of the obtained results, the
one  can  select  N $5  and  d $7  to  obtain  accuratec     max

results.

Fig. 5: Variation  of  the  results  with  the  radius of
support domain and completeness order for an
irregular descretization simply supported plate;
(Redddy, 1999; Timoshenko and Woinowsky-
Krieger, 1959)

bending problem of regular and irregular isotropic plates
is solved and compared with the previous analytical ones
by Timoshenko and Woinowsky-Krieger (1959); Reddy
(1999);   Liew   and   Han  (1997)  and  Sengupta  (1995).
Table 2-5 show a very good agreement between the
obtained results and the previous analytical solutions. For
clamped plates, the error between obtained results and the
previous exact ones by Timoshenko and Woinowsky-
Krieger (1959) and Reddy (1999) is #qa /D 10G . As well as4  7

Table 3-5 show that indirect moving least squares
differential quadrature method is more efficient and
accurate than the other DQ techniques.

Further, a parametric study is derived to investigate
behavior of the composite due to Young's modulus
gradation  ratio  (E /E ),  shear  modulus  gradation  ratio2 1

(G /G ), Poisson’s ratio (v /v ), graduation factor ((),2 1    2 1

stress distribution, F , aspect ratio a/b and the interfaceyy

location (a /a ) where a and b are the width and length of1 2

the rectangular plate  a = a +a .  Figure  7-8  and  9  shows1 2

Table 2: Comparison between the obtained bending moment and the
previous analytical ones at the centre of a clamped circular plate

Obtained results
----------------------------------------------------------

Support size Exact N = 4 N  = 5 N  = 6 N = 7*
c  c  c  c 

r = 0.7a 0.8125 0.8125 0.7301 0.8161 0.3536
r = 0.8a 0.8125 0.8125 0.8125 0.8124 0.8090
r = 0.9a 0.8125 0.8125 0.8125 0.8125 0.8111
r = a 0.8125 0.8125 0.8125 0.8125 0.8125
r = 1.1a 0.8125 0.8125 0.8125 0.8125 0.8125
Reddy (1999) and Timoshenko and Woinowsky-Krieger (1959)*

Fig. 6: Variation of the results with the completeness order N  and the number of grid points N  for an irregularc       1

quadrilateral plate with various thickness h (d  = 8) (Liew and Han, 1998)max
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Table 3: Comparison between the obtained deflection by different methods and the previous analytical ones for simply supported skew rhombic plates at the
centre (2 = 45°)

Exact MLSDQM MLSDQM+FDM IMLSDQM
------------------------------ ------------------------------- --------------------------------- --------------------------------

Support size    1 2 N  = 4 N = 5 N  = 4 N = 5 N = 4 N = 5c  c  c  c  c  c 

r = 0.5a 2.1193 2.1285 1.4257 1.7483 1.42575 1.74834 1.42592 1.75012
r = 0.6a 2.1193 2.1285 1.9384 1.9394 1.93843 1.93945 1.93884 1.94226
r = 0.7a 2.1193 2.1285 2.0541 2.0109 2.05412 2.01095 2.05495 2.01134
r = 0.8a 2.1193 2.1285 2.0888 2.0354 2.08884 2.03544 2.08888 2.03753
Execution time (sec) 4.317165 3.497017 3.237787
1 = Liew and Han (1997) and 2 = Sengupta (1995)

Table 4: Comparison between the obtained deflection by different methods and the previous analytical ones for clamped circular plate at the centre
Support size Exact MLSDQM MLSDQM + FDM IMLSDQM*

r = 0.7a 1.6339 1.392360 1.392440 1.395200
r = 0.8a 1.6339 1.633900 1.633900 1.633900
r = 0.9a 1.6339 1.633900 1.633900 1.633900
r = a 1.6339 1.633900 1.633900 1.633900
r = 1.1a 1.6339 1.633900 1.633900 1.633900
Execution time (sec) 4.265994 3.245480 3.050844

Table 5: Comparison between the obtained deflection by different methods and the previous analytical ones, (*qa /D) for clamped rectangular plates at the centre4

b/a
--------------------------------------------------------------------------------------------------------------------------------------------- Execution

W (0,0)        1 1.1 1.2 1.3 1.4 1.5 time (sec)
Exact 0.00126000 0.00150000 0.00172000 0.00191000 0.0020700 0.00220000 -*

MLSDQM 0.00126100 0.00150040 0.00172140 0.00191160 0.0020692 0.00220250 3.576989
MLSDQM + FDM 0.00126054 0.00150028 0.00171960 0.00190970 0.0020702 0.00220030 2.529735
IMLSDQM 0.00126035 0.00150013 0.00171987 0.00190985 0.00207011 0.00220021 2.474488

b/a
--------------------------------------------------------------------------------------------------------------------------------------- Execution

W (0,0)     1.6 1.7 1.8 1.9 2 time (sec)
Exact 0.002300000 0.00238000 0.00245000 0.00249000 0.00254000 -*

MLSDQM 0.002296000 0.00237800 0.00245202 0.00248900 0.00254104 3.576989
MLSDQM + FDM 0.002230100 0.00238030 0.00244950 0.00248970 0.00254078 2.529735
IMLSDQM 0.002230095 0.00238015 0.00244976 0.00248981 0.00254052 2.474488
Reddy (1999) and Timoshenko and Woinowsky-Krieger (1959)*

Fig. 7: Variation of the normalized deflection with supported; b) Clamped-clamped (E  = E ; v  = v )
Young's modulie for composite circular plates: a)
Simply  supported;  b) Clamped-clamped  (G  = G ; that the values of normalized deflection decrease with2  1

v = v ) increasing  the  Young’s  modulus, the shear modulus and2  1

Fig. 8: Variation of the normalized deflection with shear
modulie for composite circular plates: a) Simply

2  1  2  1
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Fig. 9: Normalized deflection distribution through Fig. 11: Normalized stress distribution through different
different locations for FG simply supported skew locations for FG; a) Simply supported; b)
plate: a) ( = 1; b) ( = 10 Clamped-clamped (( = 10, h = 0.1)

Fig. 10: Variation of the normalized deflection with aspect
ratio   for   composite   rectangular   plates:   a)
Simply supported; b) Clamped-clamped (E /E = 2;2 1 

G   =  G ; v  = v )2    1  2  1

the graduation factor (. While, these values increase with
increasing of the aspect ratio (a/b) as shown in Fig. 10.
Figure   11   show   stress   distribution,   F ,  through  theyy

composite. This may be investigated through the stiffness
concepts. Also, the computations declare that the results
do  not  affect  significantly  by  the  Poisson’s ratio v , v .1  2

Further,  Fig.  9  insist  the  advantages  of   FG
composites that treat the interfacial discontinuity
problems.

CONCLUSION

The efficiency and accuracy of moving least square
differential quadrature techniques, are examined for
solving composite plate problems. All of these methods
lead to accurate results but indirect technique gives more
the efficiency and accuracy. Also, a parametric study is
introduced to investigate the effects of computational,
geometric and elastic characteristics of the problem on the
values of the obtained results. Further, this research can
be considered as an extension for quadrature solutions of
composite plate problems.
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