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Abstract: Artificial Bee Colony (ABC) algorithm is a relatively new swarm intelligence algorithm which has
shown a competitive performance with respect to other population-based algorithms. However, there are still
some insufficiencies in ABC algorithm such as slow convergence and easily trapped in local optima. These
drawbacks can be even more challenging when constraints are also involved. To address these issues an
Efficient Constrained Artificial Bee Colony (eABC) algorithm is proposed where two new solution search
equations are introduced respectively to employed bee and onlooker bee phases. In addition, smart flight
operator is employed to be used in scout bee phase. This algorithm is tested on several constrained benchmark
problems. The numerical results demonstrate that the eABC is competitive with other state of the art
constrained ABC algorithms under consideration.
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INTRODUCTION of implementation, ABC has captured much attention from

Optimization methods are frequently applied to
address various real world problems. However, finding
optimal solutions for these problems are very challenging
using traditional optimization methods. Because there
have always been many real world problems where
derivatives are unavailable or unreliable. Swarm
Intelligence (SI) algorithms have shown considerable
success in solving nonconvex, discontinuous, non-
differentiable optimization problems and attracted more
attention in recent years.

The most prominent Evolutionary Algorithms (EAs)
have been suggested in the literatures are Genetic
Algorithm (GA) (Holland, 1975), Particle Swarm
Optimization (PSO) (Kennedy, 2011), Ant Colony
Optimization  (ACO)  (Dorigo  and  Blum,  2005),
Differential Evaluation (DE) (Storn and Price, 1997) and
Artificial Bee Colony (ABC) algorithm (Karaboga, 2005)
and so on.

ABC is a recently proposed SI algorithm which
simulates the foraging behavior of honey bee swarms
(Karaboga, 2005). Numerical performance demonstrate
that  ABC  algorithm  is  competitive  to   other
population-based algorithms such as GA, PSO, DE with
an advantage of employing fewer control parameters and
the need for fewer function evaluations to arrive at an
optimal solution (Karaboga and Basturk, 2007a, b, 2008;
Karaboga  and  Akay, 2009). Due to its simplicity and ease

researchers and it has been applied to solve many
numerical  as  well  as  practical  optimization  problems
(Gao et al., 2014; Aydin et al., 2014; Xiang and An, 2013;
Li et al., 2012), since its invention.

Among optimization problems, the ones tackled in
this paper are Constrained Optimization Problems (COPs)
for Nonlinear Programming (NLP) which can be formulated
as in the following problem:

(1)

Where:
x = [x , x ,...,1  2

x ]0R = D-dimensional decision vector and eachD
n

R = Bounded in the interval [x , x ]n
min  max

x = The lower boundmin

x = The upper boundmax

f(x) = The objective function defined in D-
dimensional search space in Rn

In general, most of the optimization problems have
been primarily designed to address unconstrained
optimization problems. In order to solve constrained
problem, constraint handling techniques are employed to
direct the search towards the feasible regions of the
search space. Constraint handling methods are
categorized  into  four  groups  by Koziel and Michalewicz
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(1999): methods based on penalty functions which where, x  = (x , x ,..., x ) and i = 1, 2,..., SN, j = 1, 2,..., D and
penalize constraints to solve a constrained problem as an
unconstrained problem, methods based on reservation of
feasible solutions by transforming infeasible solutions to
feasible solutions with some operators, methods that
separate feasible and infeasible solutions, other hybrid
methods.

However, ABC algorithm similar other evolutionary
algorithms faces up with some challenging problems
related with the solution search equation of ABC. This
method has good exploration but poor exploitation
(Karaboga, 2005) which results in the poor convergence.
In this sudy, a new constrained ABC algorithm is
proposed by employing two new solution search
mechanisms for employed bee and onlooker bee phases
respectively. Furthermore, smart flight operator is
employed into scout bee phase instead of purely random
generation of solutions in general ABC.

MATERIALS AND METHODS

Artificial bee colony: ABC algorithm is a recently
introduced population-based method by Karaboga (2005)
which simulate the foraging behavior of honey bee
colonies. In ABC, the colony of artificial bees is classified
into three groups, employed bees, onlooker bees and
scout bees. Half of the colony includes employed bees
and the other half consists of onlooker bees. Employed
bees search around the food source and gathering
required information. Then, they carry the information
about the position of food source back to the hive and
share this information with onlooker bees.

Onlooker bees choose food source with better quality
from those found by employed bees using probability
selection mechanism as a proportional of the quality of
food source. Therefore, the food sources with good
quality attract more onlooker bees compared to food
source with lower quality. If the quality of the food source
is not improved through a predetermined number of
iteration, the food source will be abandoned by its
employed bee and employed bee becomes a scout and
starts to search for a new food source randomly in the
neighborhood of the hive. Through, the search process,
scout bees are responsible for exploration while
exploitation is done using employed and onlooker bees.

In ABC, the position of a food source represents a
possible solution to the problem and the nectar amount of
each food source corresponds to their fitness of the
related solution. The number of employed bees or the
onlooker bees is equal to the number of solutions SN in
the population. At initialization step, a population of SN
solutions are randomly generated using the following
equation:

(2)

i  i1  i2  iD

D is a number of optimization parameters, x  and xmin, j  max, j

are the lower and upper bounds for the dimension j,
respectively.

After initialization, the population of solution is
evaluated and then is repeated in a cycle of the employed
bees, onlookers and scouts. Each employed bee generates
a new food source in their neighborhood using Eq. 3:

(3)

where, k0{1, 2, ..., SN} and j0{1, 2, ...D} are randomly
chosen indexes, k has to be different from i, N  is a randomij

number in the range [-1, 1]. Once v  = {v , v , ..., v } isi  i1  i2   iD

obtained, it will be evaluated and compared with x  usingi

greedy selection mechanism. If the fitness of v  is betteri

than fitness value of x , the v  will be replaced with x  andi   i     i

x  will be removed, otherwise x  is retained in population.i     i

After all employed bees complete their searches, they
share their information about fitness and position of
solutions with the onlooker bees. An onlooker bee
chooses a solution using probability value associate with
the solution where p  is defined as follows:i

(4)

where, fit  is the fitness value of solution i. Obviously, thei

higher the value of fit  has more probability that the ithi

solution is selected. Then as in the case of employed bee
a new solution is generated using Eq. 3. If a new solution
has better quality than the old solution, the old solution
is replaced with new solution otherwise the old solution
remained in the population.

If a solution cannot be improved further through a
predetermined number of trials (limit) the solution is
assumed to be abandoned and the corresponding
employed bee becomes a scout. The scout produces a
solution randomly using Eq. 2. The detailed pseudo code
of original ABC algorithm is presented in the Algorithm 1.

Algorithm 1; Original artificial bee colony algorithm:
Initialize the population of solution
Evaluate the initial population
cycle = 1
Repeat
Employed bee phase
Apply greedy selection process
Calculate the probability values
Onlooker bee phase
Scout bee phase
Memorize the best solution achieved so far
cycle = cycle+1
until cycle = maximum cycle number
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Previous work on constrained artificial bee colony: ABC probability selection mechanism is presented to enhance
algorithm has been originally introduced to address diversity by allowing infeasible solutions in the
unconstrained optimization problems (Karaboga, 2005). population where infeasible solutions are introduced
Then, this method is adapted to deal with constrained inversely proportional to their constraint violations and
optimization problems. The presence of various feasible solution defined based on their fitness values. To
constraints  and  interferences  between them makes COPs recognize this algorithm through this paper the
more challenging than unconstrained optimization abbreviation MABC will be used.
problems. In this study, we briefly present the available Another modified constrained ABC was developed
constrained ABC algorithms in the literature. by Subotic (2011) where Multiple Onlooker Bees (MO-

The first attempt to apply ABC algorithm to solve ABC) are applied into original constrained ABC. In this
COPs is done by Karaboga and Bastruck (Karaboga and algorithm three trial solutions are applied to form a new
Basturk, 2007a, b). To cope with constraints, Deb (2000)’s solution. The numerical performance of the algorithm
mechanism is employed to be used instead of the greedy when compared with the original ABC shows comparative
selection mechanism due to its simplicity, computational results.
cost and fine tuning requirement over other constraint Mezura-Montes and Cetina-Dominguez presented a
handling methods. Because initialization with feasible Modified ABC (M-ABC). This algorithm consist of four
solutions is very time consuming and in some situation, modifications on the selection mechanism, the equality
impossible to generate a feasible solution randomly, the and boundary constraints and scout bee operators
constrained ABC algorithm does not consider the initial compared to the original constrained ABC. The
population to be feasible. As alternative Deb’s rules are mechanisms to handle equality and boundary constraints
employed to direct the solutions to feasible region of are enhanced with the aim to support a more appropriate
search space. In addition, the scout bee phase of the approach to the feasible region of the search space. A
algorithm provides a diversity mechanism that allows new binary tournament selection based on feasibility is
and probably infeasible individuals to be in the supplanted with the fitness selection of solutions applied
population. Scouts are generated at a predetermined in the original ABC. In addition, smart flight operator is
period of cycles for discovering new solution randomly. employed to be used in scout bee instead of the uniformly
This period is another control parameter called Scout random approach in constrained ABC (Karaboga and
Production Period (SPP). At each SPP cycle, it is Basturk,  2007a,  b).  The   numerical   results   show   that
controlled if there is an abandoned solution or not. If M-ABC provides   comparable   results   with   respect   to
there is a scout production process is executed. The algorithms under comparison (Mezura-Montes and
numerical performance of the proposed ABC algorithm is Cetina-Dominguez, 2012).
evaluated and compared with constrained PSO and DE A Genetic Inspired ABC algorithm (GI-ABC) was
algorithms and results show that ABC algorithm can be introduced to adopt GA in the process of replacement of
effectively applied for solving constrained optimization exhausted solutions (Bacanin and Tuba, 2012). In this
problems. algorithm, uniform crossover and mutation operators from

Mezura-Montes et al. (2010) presented Smart Flight GAs are applied to improve the performance of ABC
ABC (SF-ABC) algorithm to improve the performance of algorithm.
constrained ABC where smart flight operator is applied in Stanarevic, Tuba and Bacanin (Stanarevic et al., 2011)
scout bee phase to direct search towards promising suggested Smart Bee ABC algorithm (SB-ABC) to solve
region of the search space. Therefore if the best solution constrained problems. In this algorithm, smart bee is used
is infeasible, the trial solution has the chance to be to memorize the solutions and their fitness. Then, the best
located near the boundaries of the feasible region of solution is replaced with a new random solution if the new
search space. However if the best solution is infeasible, solution is unfeasible or if the new solution is feasible but
the smart flight will generate a solution in promising it does not have better fitness. The numerical experiments
region of search space. In addition, the combinations of show efficiency of the method.
two dynamic tolerances are also applied into SF-ABC to ABC-BA   is   a   hybrid   algorithm   presented   by
transform the original COP into unconstrained Tsai (2014) that integrates ABC and Bee Algorithm (BA)
optimization. The numerical results demonstrate the to solve COPs. In this algorithm, individuals can perform
competitive performance of SF-ABC with constrained as an ABC individual in ABC sub-swarm or a BA
ABC (Karaboga and Basturk, 2007a, b). individual in the BA sub-swarm. In addition, the

A modified ABC was introduced by Karaboga and population size of the ABC and BA sub-swarms change
Akay (2011) to solve COPs. In this algorithm, a new stochastically   based   on   current   best   fitness   values
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achieved by the sub-swarms. Experimental results Equation 5 it is obvious that when the difference
demonstrate that ABC-BA outperforms ABC and BA
algorithms, respectively.

Constrained ABC algorithm was also applied to solve
many real-world engineering problems in recent years.
Brajevic et al. (2011) proposed a Constrained Artificial
Bee Colony (SC-ABC) and applied on several standard
engineering benchmark problems of discrete and
continuous variables. The numerical results then were
compared to results obtained from Simple Constrained
Particle  Swarm  Optimization  algorithm (SiC-PSO) which
show a very good performance. Akay and Karaboga
(2012) used ABC to solve large scale optimization
problems as well as engineering design problems. The
numerical results show that the performance of ABC
algorithm is comparable to those of state of the art
algorithms under comparison. Upgraded Artificial Bee
Colony (UABC) algorithm was also introduced for
constrained  optimization  problems  by  Brajevic  and
Tuba (2013) to improve fine-tuning features of the
modification  rate  parameter  and  applying  modified
scout  bee  phase  of  the  ABC  algorithm.  This  algorithm
was then tested on several engineering benchmark
problems and the performance was compared with the
performance of the Akay and Karaboga (2012) algorithm.
The numerical results show that the UABC produces
better results.

Efficient constrained artificial bee colony: In this study,
we proposed an efficient constrained Artificial Bee
Colony (eABC) algorithm. In the first step of this
algorithm, initial population of SN solutions is generated
randomly using Eq. 2. After initialization, the population
is evaluated and a cycle of the search procedures of the
employed bees, the onlooker bees and scout bees is
repeated.

A new solution search equation is proposed for
employed bee phase using Eq. 5:

(5)

Where:
r = Randomly chosen index has to be different

form
i and ( = A random number between [-1, 1]i, j

R = Uniformly distributed random number in  thej

range [-1, 1]
MR = A control parameter which controls the in population as well as feasible solutions. The fitness

number of parameters to be modified

between    the    parameters    x     and    x     decreases,  theij        rj

perturbation on the position x  decreases. Therefore asij

the search moves toward the optimum solution in the
search space, the step size is adaptively reduced.

After generating a new solution using Eq. 5 Deb’s
ruels are applied in selection process to direct the
individuals to feasible region of search space. Using
Deb’s mechanism, either the new solution is memorized
and the current solution is removed or the current
solution is remand.

Algorithm 2; Employed bee phase for eABC:
for I = 1: SN
for j = 1: D
Produce a new solution u  using Eq. 5i

end for
If no parameter is changed, choose a parameter randomly and change it form
solution x  using Eq. 5.i

Evaluate the solution vi

Apply the selection process between v  and x  based on Deb’s Methodi  i

If solution x  does not improve trial  = trail +1, otherwise trail  = 0i    i  i   i

end if

Deb’s Method utilizes a tournament selection
mechanism where two solutions are compared using
following rules:

C Feasible solution is preferred to infeasible solution
C Among two feasible solutions, the one having better

objective function value is preferred
C Among one feasible and one infeasible solution, the

one having smaller constant violation is preferred

The framework of employed bee phase is given in
Algorithm 2. After all employed bees complete their
searches, they share their information related to the
fitness values and the positions of their solutions with the
onlooker bees. An onlooker bee chooses a solution using
a probability mechanism as follows:

  (6)

where,  violation   is the constraint violation of solution xi        i

and finess  is the fitness value of the solution x . Based oni        i

this equation infeasible solutions are allowed to consider

value also is defined in Eq. 7:
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(7)

where, f  is the objective function of solution i. Ani

onlooker bee evaluates the information shared by
employed bees and selects a solution with a probability
associated with its nectar amount. After solution
selection, onlooker bees produce modification on the
position of the selected solution by taking advantage of
the global best and random solution to guide the
candidate solution toward promising region of search
space using Eq. 8:

(8)
where,  x   and  x   are  uniformly  random  solution andr1,  j    r2,  j

j = {1,  2,  ...,  D},  N   and  k   are  random  number  ini,  j    i,  j

the range [-1, 1] and [0.3, 0.6], respectively. Similar with
employed bee phase after generating new solution using
Eq. 8, the new solution is compared with current solution
using Deb’s rules. If the new solution has better equality
it will remained in the population and the current solution
removed otherwise the current solution is remained. The
framework  of  onlooker  bee  phase  is  given  in
Algorithm 3.

After distribution of all onlooker bees if a solution
can not improve further through predetermined number of
cycles (limit) it is abandoned and replaced with a new
solution discovered by scout bees. The scout produces
a  new  solution  using  smart  flight  operator  defined  in
Eq.  9:

(9)

where, N  is random number in [-1,1] and r is random indexij

that have to be different from i, x  is the best solutionbest

found so far.

Algorithm 3; Onlooker bee phase for eABC:
t = 0, i = 1
Repeat
if random<p  theni

t = t+1
for j = 1: D
Produce a new solution v  using Eq. 8i

end for
If no parameter is changed, choose a parameter randomly and change it form
solution x  using Eq. 8.i

Evaluate the solution vi

Apply the selection process between v  and x  based on Deb’s Methodi  i

If solution x  does not improve trail  = trail +1, otherwise trail  = 0i    i  i   i

end if
i = i+1
i = i mod (SN+1)
until t = SN

Numerical experiments and comparisons: In order to
evaluate    the   performance   of   ABC    algorithm   and
show   the   efficiency   and   superiority   of   the
proposed   algorithm,   24   well-known   benchmark
problems   form   CEC2006   (Liang   et   al.,   2006)   are
applied.

The proposed algorithm is evaluated and compared
with five state of the art constrained ABC algorithms. The
eABC algorithms as well as other algorithms in
comparison are coded in MALAB environment. Each
problem runs 30 times and statistical results are provided
including  the  best,  median,  mean,  worst  results  and
the  standard  deviation  which  can  be  seen  in  Table 1
and 2.

Table 1: The Numerical results obtained by ABC, MABC, M-ABC, MO-ABC and eABC
Problems Parameters ABC MABC M-ABC SF-ABC MO-ABC eABC
g01 Best -1.5000000 -1.5000000 -15.000000 -15.0000000 -15.000000 -1.5.00000

Mean -1.5000000 -1.5000000 -15.000000 -14.163245 -15.000000 -1.500000
Worst -1.5000000 -1.5000000 -15.000000 -12.525128 -15.000000 -1.500000
SD 0.0000000 0.0000000 0.000000 0.92321 0.000000 0.000000

g02 Best 0.8035669 0.8035383 0.803614 -0.708944 -0.803610 -0.8036150
Mean -0.7917445 -0.792927 -0.799450 -0.471249 -0.793510 -0.8021544
Worst -0.7529237 -0.750302 -0.778176 -0.319535 -0.74458 -0.7990689
SD 0.013292 0.011051 -0.006440 0.010823 0.016310 0.001263

g03 Best -1.004657 -1.004817 -1.000 -1.000 -1.000 -1.00409
Mean -1.000096 -1.001941 -1.000 -1.000 -1.000 -1.00313
Worst -0.979659 -0.989160 -1.000 -1.000 -1.000 -1.00104
SD 0.00597911 0.0003752 0.000 0.000 0.000 0.001336

g04 Best -30665.542 -3066.542 -30665.5 -30665.539 -30665.539 -30665.54
Mean -30665.542 -3066.542 -30665.539 -30665.539 -30665.539 -30665.54
Worst -30665.542 -3066.542 -30665.539 -30665.539 -30665.539 -30665.54
SD 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

g05 Best 5126.489 5127.099 5126.734 5126.506 5126.657 5126.394
Mean 5177.239 5263.991 5178.178 5126.527 5162.506 5299.670
Worst 5307.988 5802.318 5317.183 5126.859 5229.119 5968.589
SD 57.86021 156.0343 56.0001 0.079343 47.8234 248.4226

g06 Best -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814
Mean -6961.814 -6961.814 -6961.814 -6961.813 -6961.813 -6961.814
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Table 1: Continue
Problems Parameters ABC MABC M-ABC SF-ABC MO-ABC eABC

Worst -6961.814 -6961.814 -6961.814 -6961.805 -6961.804 -6961.814
SD 0.0000000 0.0000000 0.000000 0.0002 0.0001 0.000000

g07 Best 24.46138 24.47032 24.3121 24.16452 24.32317 24.55848
Mean 24.70718 24.68698 24.41643 24.65842 24.45625 24.80918
Worst 25.16577 25.36005 24.794131 25.55104 24.92918 25.10102
SD 0.1813943 0.1786124 0.127124 0.326125 0.135021 0.1286075

g08 Best -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.0958250
Mean -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.0958250
Worst -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.0958250
SD 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

g09 Best 680.6381 680.6371 680.6331 680.6321 680.6312 680.6387
Mean 680.6506 680.6515 680.6472 680.6450 680.6353 680.6512
Worst 680.6757 680.6760 680.6763 680.8582 680.6362 680.6776
SD 0.008074 0.009610 0.054320 0.041213 0.004123 885.1586

g10 Best 7160.631 7220.554 7051.775 7049.517 7053.32 7304.817
Mean 7364.940 7347.843 7233.810 7116.824 7167.801 7445.860
Worst 7691.303 7924.128 7604.129 7362.741 7418.334 7647.175
SD 129.8405 134.1410 132.1284 82.12413 83.00823 87.75224

g11 Best 0.749000 0.749000 0.750000 0.750000 0.750000 0.7490001
Mean 0.749002 0.749003 0.750000 0.750000 0.750000 0.7490035
Worst 0.749010 0.749014 0.750000 0.750000 0.750000 0.7490247
SD 0.000002 0.000003 0.000000 0.000000 0.000000 0.0000005

g12 Best -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
Mean -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
Worst -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
SD 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

g13 Best 0.555124 0.489597 0.05389 0.053986 0.454213 0.491074
Mean 0.949781 0.957689 0.157791 0.263854 0.456375 0.943945
Worst 1.492954 1.437534 0.441978 1.000000 0.489036 1.325281
SD 0.146915 0.161358 0.017232 0.216234 0.021103 0.171501

Table 2: The Numerical results obtained by ABC, MABC, M-ABC, MO-ABC and eABC
Problems Parameters ABC MABC M-ABC SF-ABC MO-ABC eABC
g14 Best -45.11878 -45.32082 -47.64541 -46.6651370 -46.450835 -45.97169

Mean -42.68215 -42.65421 -47.27156 -46.468243 -45.998013 -42.20681
Worst -40.60165 -40.05962 -46.53698 -43.87123 -45.316798 -39.11480
SD 1.171236 1.195831 0.245761 0.520124 0.257124 1.461280

g15 Best 941.2191 951.4375 961.7152 961.7151 961.7151 940.1215
Mean 958.8476 960.8922 961.7188 961.7155 961.8831 957.7468
Worst 972.9578 970.6846 961.7912 961.7201 964.3398 970.6761
SD 7.512742 4.87894 0.014319 0.1592 0.542672 7.754218

g16 Best -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155
Mean -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155
Worst -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155
SD 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

g17 Best 8886.685 8879.576 8866.599 8927.598 8939.125 8871.616
Mean 9053.597 9053.567 8987.459 8928.865 8946.134 9052.462
Worst 9249.174 9215.365 9165.2543 8938.617 8956.127 9.259310
SD 123.0898 122.6397 95.6532 3.1213 9.52825 1.320255

g18 Best -0.840568 -0.859365 -0.866023 -0.866025 -0.865976 -0.842418
Mean -0.840573 -0.710702 -0.795019 -0.740748 -0.767198 -0.741887
Worst -0.0508290 0.0677663 0.093789 0.145231 0.096120 0.061626
SD 0.0508290 0.0677663 0.093789 0.145231 0.096120 0.061626

g19 Best 36.77401 37.58086 33.2547 32.66271 33.76983 37.08395
Mean 39.29784 39.83492 34.2656 33.10714 35.31478 39.70235
Worst 42.70161 42.42735 35.7368 34.91401 37.36458 42.47243
SD 1.457124 1.174349 0.63124 0.51321 0.687514 1.363563

g23 Best - - -159.754 -350.126 - -704.385
Mean - - -35.2847 -121.375 - -221.191
Worst - - 109.1275 276.0038 - 57.88116
SD - - 82.76981 157.8952 - 196.7631

g24 Best -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013
Mean -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013
Worst -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013
SD 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Benchmark test problems and parameter settings: The functions (linear, nonlinear, polynomial, quadratic and
main characteristics of 24 benchmark functions are shown cubic) with different numbers of decision variables,
in  Table  3.  Table  3  describes various kinds of these test different types (linear inequalities, linear equalities,
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nonlinear inequalities and nonlinear equalities) and is the number of linear inequality constraints, NI is the
numbers of constraints. Table 1 D is the estimated ratio
between  the  feasible  region  and  the  search  space,  LI

Table 3: The main characteristics of the test problems
Function Type n D LI NI LE NE a
g01 Quadratic 13 0.0111 9 0 0 0 6
g02 Nonlinear 20 99.9971 1 1 0 0 1
g03 polynomial 10 0.0000 0 0 0 1 1
g04 Quadratic 5 52.1230 0 6 0 0 2
g05 Cubic 4 0.0000 2 2 0 3 3
g06 Cubic 2 0.0066 0 5 0 0 2
g07 Quadratic 10 0.0003 3 2 0 0 6
g08 Nonlinear 2 0.8560 0 4 0 0 0
g09 polynomial 7 0.5121 0 3 0 0 2
g10 linear 8 0.0010 3 0 0 0 3
g11 polynomial 2 0.0000 0 1 0 1 1
g12 Quadratic 3 4.7713 0 1 0 0 0
g13 Quadratic 5 0.0000 0 0 0 3 3
g14 Nonlinear 10 0.0000 0 0 3 0 3
g15 Quadratic 3 0.0000 0 0 1 1 2
g16 Nonlinear 5 0.0204 4 34 0 0 4
g17 Nonlinear 6 0.0000 0 0 0 4 4
g18 Quadratic 9 0.0000 0 13 0 0 6
g19 Nonlinear 15 33.4761 0 5 0 0 0
g20 linear 24 0.0000 0 6 2 12 16
g21 linear 7 0.0000 0 1 0 5 6
g22 linear 22 0.0000 0 1 8 11 19
g23 linear 9 0.0000 0 2 3 1 6
g24 linear 2 79.6556 0 2 0 0 2

Table 4: Parameters setting
Parameters Symbols Values
Solutions number SN 20
Maximum cycle number MCN 6000
Modification rate MR 0.8
Population size PS 40
Limit Limit 150
Scout production period SPP 150
Epsilon g 0.001

number of nonlinear inequality constraints, LE is the
number of linear equality constraints, NE is the number of
nonlinear equality constraints, a is the number of
constraints active at the optimal solution and n is the
number of variables of the problem. However as all the
algorithms considered in comparison were not able to
obtain feasible solutions for g20-22 we exclude these
problems from our experiments. In addition, the value of
each parameters used are given in Table 4.

RESULTS AND DISCUSSION

The numerical performance of eABC algorithm was
compared with original ABC (Karaboga and Basturk,
2007a, b), MABC (Karaboga and Akay, 2011), M-ABC
(Mezura-Montes and Cetina-Dominguez, 2012), SF-ABC
(Mezura-Montes et al., 2010) and MO-ABC (Subotic,
2011) algorithms. From Table 1 and 2 it is obvious that the
eABC algorithm in problems g02, g03, g04, g08, g11, g23
outperforms compare with other algorithms. For g05, g10,
g15, g17, g19 the performance of SF-ABC was superior to
all other algorithms.  However,  MO-ABC  is  superior in
problems g09 and g14. In problem g01, g06, g12, g16 and
g24 all the algorithm can find the optimal results. The
numerical performance showed that eABC provided
comparable result with respect to other state of the art
algorithms in solving COPs. In order to compare the
convergence ability of eABC with the other state of the
art algorithms, three sample plots are presented in Fig. 1-3
which clearly show that eABC was able to converge faster
than other algorithms which confirms that the new search
equations can accelerate the constrained ABC
convergence.

Fig. 1: Iterations to convergence for problem g02
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Fig. 2: Iterations to convergence for problem g11

Fig. 3: Iterations to convergence for problem g23

CONCLUSION REFERENCES

In this study, we have introduced a modified
constrained ABC called eABC algorithm to solve
constrained optimization problems in which two new
search equations proposed for employed bee and
onlooker bee phases to enhance the global convergence
of ABC algorithm to solve COPs. In addition, smart flight
mechanism was applied to generate new solution in scout
bee   phase.   The   experimental   results    were    tested
on 24 benchmark functions and show that eABC is
competitive with state of the art constrained ABC
algorithms. The Future researches include testing other
constraint handling mechanisms and using local search
operators to improve ABC algorithm further.
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