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Abstract: This study deals with the integration of medical images with multimodal Medical Image Fusion (MIF)
problem, employing Improved DT-CWT (Dual Tree Complex Wavelet Transform) and a Discrete Optimization
Method is to introduce a new approach to fuse panchromatic image and multi-spectral images. In image fusion,
two approaches used namely Spatial and Transform. In Spatial fusion, it reduces structural distortions. But,
wavelet transform affect the absence of shift invariance and low directional selectivity. These two
disadvantages are overcome by Improved DT-CWT (Duel Tree Complex Wavelet Transform) and the problem
as a discrete multilevel optimization of an energy functional that balances the offerings of three conflicting
terms: a squared error of both MRI and CT Image which giving out strong MRI/CT edges and a prior which
favours smooth results by encouraging neighbouring pixels to have similar fused-image values and introduce
a transparency-labelling formulation which decreases the computational load. The proposed Improved DT-CWT
discrete optimization method is remarkably better than the other fusion method. 
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INTRODUCTION solution  to  be  related  to  the  MR  input with  preference

The fusion of images acquired from various a prior, favouring smooth solutions by encouraging
instruments is of great significance in medical imaging, neighbouring pixels to have similar fused image value.
computer vision, microscopic imaging and remote Further, introduce a transparency labelling formulation
sensing.  Image  fusion can well-defined as the techniques (Miles et al., 2013) medical Image Fusion Via Graph Cuts
by which numerous images or few of their features are a recommended which significantly reduces the
combined together to form a single image with aiming at computational load. The proposed discrete optimization
achieving improved CT, MR image quality to better of graph-cut fusion guarantees nearly global solutions
improved image classification, monitoring. Fused image Praveena and Vennila (2009) whereas avoiding the
will enrich reliability and rapidity of feature extraction, pixilation artifacts that affect standard wavelet based
increase the usage of the data sets and extend medical methods.
images application area. Improved DT-CWT based image This study further discusses Boykov and
fusion method has developed to combine a resultant Kolmogorov (2004) Image Fusion Improved DT-CWT
image with enhanced perceptual as well as quantitative algorithms, entropy, image quality metrics and results with
image feature indices. A bilateral sharpness established discussion.
weighting scheme has applied for the high frequency
coefficients taking mutually gradient and its phase The dual-tree complex wavelet transform: The main
coherence in account. A normalized maximum gradient discussion of Kingsbury (1998) and Adelson et al. (1984)
weighting scheme has executed for low frequency wavelet in this study bring into line along two methods. The
components. The  proposed  method  shows  greater previous technique of DWT is related Kingsbury (2000)
result as compared to DWT and traditional DCWT based and Boykov and Kolmogorov (2004) with the proposed
image fusion algorithms. Image fusion is a discrete DT-CWT Method. The development of the research work
multilabel optimization problem Boykov et al. (2001) and into the arena of image fusion can be generally, brought
Kolmogorov and Zabin (2004) a recommanded via the into the following stages as Wavelet Transformation and
well-known  swap   or  alpha-expansion  moves.  The DT-CWT Method. The proposed improved version  of
proposed energy function balances the contributions of image  fusion  DT-CWT  algorithm  and associate it with
three competing terms: a squared error which boosts the Wavelet Based Image Fusion algorithm (Fig. 1).

to  strong  MR  edges  and  also  strong  CT  edges  and
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Fig. 1: Directionality of DT-CWT are able to separate all parts of the M-dimension

Fig. 2: Four levels of CWT tree for real 1-D input signal x

The filter bank structure of the DT-CWT has CWT
filters which have complex coefficients and make complex
output samples and shown in Fig. 2 in which each block
is a complex filter and contains down sampling by 2 at its
outputs. Subsequently, the output sampling rates are
unaffected from the DWT but each sample has a real and
imaginary part, a redundancy of 2:1 is bring together. The
complex filters can be designed such that the magnitudes
of their step responses low with input.

Extension of CWT to 2-dimension is reached by
separate filtering along rows and then columns. On the
other  hand  if  row  and  column  filters  both  quash
negative frequencies, then only the first quadrant of the
2-dimension signal spectrum is taken. Two adjacent
quadrants of the spectrum are necessary to denote fully
a real 2-dimension signal, so filter with complex
conjugates  of  either  the  column  or  row  filters.
Kingsbury (2001) discussed discrete wavelet transform.
This introduces limited redundancy. This provided 4:1
redundancy in the transform 2-dimension signal. If the
signal occurs in M-Dimension (M>2), then additional
conjugate sets of filters required for each dimension
leading  to  redundancy  of  2 :1.  The  greatestm

computational effective way to succeed the pairs of
conjugate filters are to keep separate imaginary operators,
i   and  i   for  the row and column operation, this produce1    2

4-element ‘complex’ vectors: {r, i , i , i i } (where r means1  2  1 2

‘real’). Each 4-vector can be converted into a pair of
conventional  complex  2-vectors  by  letting  i   =  i   =  i1    2

in  one  case  and  i   =  -i   =  -i   in  the  other  case.  This1    2

relates to sum and difference processes on the {r, i , i }1  2

and {i , i } pairs in the summation blocks and creates two1  2

complex outputs, consistent to first and second quadrant
directional filters, respectively. Complex filters in multiple
dimensions are accountable for true directional selectivity,
even though being implemented separate, ever since they

frequency space. For example a 2-dimension DT-CWT
creates six band pass sub-images of complex coefficients
at every single level which are extremely oriented at
angles of ±15°, ±45°, ±75°. Represent the wavelet related
with the first wavelet filters bank as per Q(t) and the
wavelet related with the second filters bank as Q’ (t). The
wavelet Q’ (t) can be discussed by Kingsbury (1998) and
Li et al. (1995).

(1) 

where,  n(t)  =  E   k0  (m)  n  (2t-m).  The  second  wavelet,n

Q’   (t)   can   be   defined   correspondingly   in   terms   of
{k’  (n), k’  (n)}. For the ideal DT-CWT, the second0  1

wavelet,   Q’(t),   can   be    the    Hilbert    transform    of
the  first  wavelet, Q (t) (Kingsbury, 2001; Boykov and
Kolmogorov, 2004; Boykov et al., 2001; Kolmogorov and
Zabin, 2004).

Q’(t) = H{Q(t )} (2)

If the low-pass filter k’  (n) is equivalent to the half0

sample delayed version of k (n), at that time the wavelets0

made by the DT-CWT content as desired. If the given
wavelets, Q (t) and Q’(t) are orthogonal to its integer
translates, at that moment the Hilbert relation is satisfied
only if:

(3)

Recollection of an orthonormal wavelet basis, the low
pass and high-pass filters are associated as:

(4)

Consistently, k (n) = (-1) nk  (d-m) where ‘d’ is an odd1    0

integer. Later, it follows from that for the perfect DT-CWT
whose filter bank structure as presented in Fig. 3, the
high-pass filters satisfy:

(5)
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Fig. 3: Implementation of DTCWT using two wavelet
filters

Improved DT-CWT has done by performing the
subsequent steps here
S1: Images size testing. If the sizes of input images are
equal then input images are registered with each other and
send them to the next level. Zeng et al. (2006) were
suggested evaluated with quantitative techniques. If the
sizes of both the input images are not similar then the
algorithms shows the discontinue process. Image fusion
using wavelet decomposes the input images MR and CT
into estimated and detailed coefficients at required level
Hu et al. (2005) using improved DT-CWT. The estimate
and detailed coefficients of input images are combined
using fusion rule. Read two input image as a matrix. 

S2: Convert to improved DT-CWT domain. After
registering the both input images with each other it send
input images to Wavelet domain for more processing.
Apply improved DT-CWT, along row and column wise on
whole matrix of the image.

S3: Improved DT-CWT domain fusion. In this level,
decomposing the images into some mechanisms and
applied the DT-CWT function on these mechanisms for
getting the desired result.

S4: Discrete optimization of graph-cut fusion algorithm
multi label formulation. And calculate standard deviation,
entropy image quality index and edge intensity for
reconstructed image and also as shown in flow chart in
Fig. 4, the task developed to perform the image fusion has
four basic blocks: the proposed image fusion is applied in
graph method domain as given after.

In this Fig. 4, where 5 is a labelling function by which
each and every point in image domain 5 is assigned to a
label l, defining the intensity of fused image at that point.

Fig. 4: Flow chart of improved DT-CWT image fusion
process

(6)

S denotes a near finite set of integers. The Data term
K5' is defined as:

   ( 7)

where, 5P : 5÷5E and 5P : 5÷5E represents the input CT,1    2

MR images and 5E5Q is the label one region. W  and W1  2

weights can be defined as follows:

(8)

K denotes the kernel function. The W  and W  determine1  2

the solution toward strong edges in e  and e ,1  2

respectively. S is the smoothness term which provides
smooth solutions by making the neighbouring pixels
Miles et al. (2012) to have related fused-image values:

(9)

where, P is a set of paired of pixels r and q in a local
neighbourhood of r and V(5 (r), 5 (5)) is defined as:

( 10)

where, c be a positive constant. Alpha blending
reformulation. The number of labels required to express
the output image can be equal to the quantity of possible
pixel values. This aims a high computational load in the
case of images with large active ranges (Karlo et al., 2010)
so as to reduce the quantity of labels, the data term is
reformulated as a transparency labelling:

(11)

where, 5 denotes the output image. Depend on (9), the
data  term  in (5) is reformulated as follows with 5÷5 being
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a reduced set of non-negative integer labels {0, 1, 2,...,N },l

parameterized by the user specified number of labels N .l
Graph-Cut Optimization:

Where:

   (12)

With S5 being a reduced set of non-negative integer
labels {0, 1, 2,...,N }, parameter by the user listed numberl

of labels N  Graph-Cut Optimization. Just one label isl

specified to every single pixel in the image, Adelson et al.
(1984) and Rensink (2002) were discussed about image
data compression, enhancement, analysis and graphics
that associated data and smoothness costs specified to
the links in the graph cut. Let G = {M, 585*} be a
weighted graph where M has a set of nodes for every
pixel in 5 and for each label in S. It is an edge e {r, q}
between each pairs of node p, q. A cut 560585* is a set of
edges sorting out the label node from each other. A cut 56
with the lowermost cost is the least cut problem. The cost
of this least cut |56| is equal to the addition of the edge
weight of 56. For real computation of least cost cuts, it is
required to appropriately set the weights of the graph.
The least cut is designated at all stage with the final
labelling consistent to a lowermost of the energy function.
Here lowest graph cut optimization is applied to next level.

S5: Inverse Dual Tree complex wavelet transforms. Later
reunion all these decompose element with each other and
had the final fused image. 

The  fused  image , I   must   be   acquired   by   taking
the  inverse  Dual  Tree  Complex  Wavelet  Transform
(IDT-CWT) as:

(13)

The fusion rule used at this time simply means the
estimate coefficients and picks the detailed coefficient in
each sub band with the primary magnitude. Also,
additional weights might be selected along with the DWT
of the images. The fused image can be acquired by taking
the Inverse Discrete Wavelet Transform (IDWT) as:

(14)

MATERIALS AND METHODS

Image quality metrics: The general requirement of an
image fusing procedure is to scope all valid and valuable

Fig. 5: Histogram of 20 MR and CT images

information data from the CT, MR input images but all at
once it must not present any distortion in resultant fused
image. Performance measures are used to measure the all
possible supports of fusion and also used to compare
results with different algorithms (Laporterie and Flouzat,
2003).

Peak signal to noise ratio: The PSNR is used to calculate
the relationship between CT, MR input images. The PSNR
between the input image R and the fused image F is
defined as:

(15)

For improved fused image PSNR value is high.

Normalized cross correlation: The normalized cross
content between the source image R and the fused image
F is defined as:

(16)

Entropy   E:    Entropy   is   used   to   evaluate   the
amount of data. Boykov and Kolmogorov (2004),
Krishnamoorthy and Soman (2010) and Praveena and
Vennila  (2009)  were suggested that energy minimization
in low-level. Greater value of entropy shows that the
information data increases  and  the  fusion  performances
are improved (Fig. 5 and 6):

(17)
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Fig. 6: Histogram of after pre-processing CT and MRI

RESULTS AND DISCUSSION

In this study, it describes a typical sample of the
fusion outcomes and report some statistical valuations.
Some medical images of CT, MR images are chosen for
fusion. Images are fused with different methods WT, Harr
WT, CWT DT-CWT. These images used to compare with
the image fused by improved DT-CWT. The performance
of the fusion method based on Dual Tree complex wavelet
transform using image quality indexes is estimated.
Average value, standard difference, entropy, average
gradients and edge intensity are selected. Average value
is shown in Table 1. The distribution of the image gray
scale in the rough. Standard difference and entropy can
be measured the data abundance in the image. An average
gradient shows exiguous contrast, diverse texture
characteristic and explanation of the image. The inference
accords with our statement. The statistics of standard
difference and entropy appearance that spatial resolution
of all the fused images have better-quality, average
gradients and edge intensity of Table 1 both are highest,
subsequently, the information have improved in fusion
process bone and soft tissue and other objects have
distinguished more easily. In a word, although there is
improved small spectral distortion in the fused image
based on Improved dual tree complex wavelet transform,
it is spatial resolution and details texture have enhanced
remarkably. Mean error shows Table 2 that the fusion
method based on dual tree complex wavelet transform is
better than the other fusion method. This algorithm have
also evaluated based on the visual superiority of the
fused images. Total 30 people had been chosen in random
manner to visually estimate the fused images prepared in
each of the 10 sets and examined to select the finest and
worst image they have found in each image pair. The
results validated had based on image metric. CWT with
Duel Tree was rated 75% which had higher rating given to
the other algorithms.

Fig. 7: CT image

Fig. 8: MR image

Fig. 9: Fused image

Table 1: Numerical assessment for fusion of CT and MR medical images 
Quality indices
------------------------------------------------------------------

Methods Average gradient Edge intensity Entropy SD
DWT 3.958 41.9148 3.801 91.890
HARR DWT 4.110 43.7982 3.990 97.001
Improved DT-CWT 4.209 45.0100 4.286 100.982

These results had been obtained with a Matlab
implementation of the algorithm as part of an image fusion
toolbox (Fig. 7-12).
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Table 2: Mean fusion error for the patient data sets and statistical test results for the different fusion methods
Methods MR tissue CT tissue Pair wise Independente  e  P  P

Improved DT-CWT graph cuts 45.86±12.123 80.67±51.56 0.0056 0.01892
Piella (Kolmogorov and Zabin, 2004) 152.8±52.6 175.9±54.0 0.002 0.006
Contourlet (Li et al., 1995) 73.4±28.6 64.2±24.9 <0.001 0.083
DWT (Deyo et al., 2009) 64.9±26.1 63.9±25.9 <0.001 0.707
Averaging 64.2±26.0 64.2±26.0 1 1

CT bone MR bone Pair wise Independente  e  P  P

Improved DT-CWT Graph Cuts 55.89±10.9 106±35.62 <0.00091 <0.00091
Piella (Kolmogorov and Zabin, 2004) 84.1±40.6 188.7±48.0 <0.001 <0.001
Contourlet (Li et al., 1995) 82.6±19.7 89±18.6 <0.001 0.121
DWT (Deyo et al., 2009) 81.9±19.7 83.7±19.8 <0.001 0.583
Averaging 82.5±19.8 82.5±19.8 1 1

Fig. 10: GUI for DT-CWT fused image

Fig. 11: GUI for DT-CWT fused image
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Fig. 12: GUI for image fused DT-CWT

CONCLUSION proposed fusion technique leave behind other methods.

In this study, image fusion process specifically contribution towards the enhancement of image fusion
Discrete Wavelet Transform Method, DWT Harr and quality.
Improved DT-CWT Method using entropy, standard
deviation quality index and image metrics have analysed.
These investigates had conducted by using MATLAB.
Depending upon the purpose of a specified application:

C Desire a fusion result that show more aspect in
colour, for improved image analysis

C Fusion result that improves the correctness of digital
grouping

C Visually good-looking fused colour image, merely for
conception purposes

The proposed fusion method compensates all the
limitations of DWT by the implementation of Improved
DT-CWT. It also eliminates the ringing artefacts
presented in the fused image by assigning suitable
weighting to high pass wavelet coefficients and low pass
coefficients individually. The normalized maximum
gradient built sharpness criterion for low frequency
coefficients improves the background texture data as well
as expands the quality of the blurred areas in the fusion
end result. The most vital data contents hidden in the
high frequency coefficients are also increased up by the
carrying out of bilateral sharpness criterion. From the
image quality valuation Table 2, it was clear that the

In future study image registration has significant
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