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Abstract: The Risk-Neutral Density (RND) function 1s the distribution implied by option prices. Broadly, the
approaches to extract RND can be classified into four categories; an underlying asset is assumed to follow a

stochastic distribution, parametric techniques, semi- parametric techniques and smoothing a volatility function.
Smoothing volatility function 1s a common practice in extracting the RND function. Theoretically, it can be
estimated by differentiating the call prices twice with respect to the strike price if the continuous strike prices
are available. This study focuses on the development of the risk-neutral density estimation by using the

smoothing implied volatility smile method.
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INTRODUCTION

Market participants believe that information that is
embedded in option prices can provide future expectation
of the underlying asset and market sentiment. The option
prices have significant information to predict future asset
prices and to estimate the distribution of returns over
possible values of asset prices. An option 1s a financial
contract in which gives a right to the holder but not an
obligation to buy or sell an underlying asset at a fixed
price at a maturity date. Theoretically, prices of options
today reflect the market situation in future and it can be
considered as forward-looking information. In fact, option
with different strike prices can be used to estimate the
density function of the underlying asset.

Under risk-neutral valuation, the probability density
contained in option prices is the risk-neutral density
(hereafter RND). It means that the option price 1s equal to
the present value of the discounted payoff calculated
under RND given a risk-free interest rate. Note that, the
risk-neutral probability distribution and the associated
risk-neutral density function represent the forward
looking prediction for the returns distribution of the
underlying asset. These RNDs contain enormous
information that are particularly useful for various
application such as extraction of risk-aversion function
(Bliss and Panigirtzoglou, 2004, Ait and Lo, 1998),
monetary policy purposes (Bahra, 1997, Melick and
Thomas, 1997; Abarca et al., 2010) and asset allocation
(Giamouridis and Skiadopoulos, 2009, Kostakis et al,
2011).

A large and growing literature on the estimation
method of RND from option prices can be classified mto
four categories. Firstly, the underlying asset is assumed
to follow a certain stochastic process and RND 1s
estimated from the process. Secondly, a parametric
technique which assumed that the underlying asset 1s to
follow a certain distribution such as mixed lognormal.
Thirdly, a semi-parametric technique 15 used to estimate
RND such as the implied binomial trees. Lastly, the RND
estimation can be obtained using mterpolation techniques
in order to smocth a volatility function and numerically
calculate the RND. This methoed also known as a non
parametric technique. There are number of works that
provide excellent and comprehensive review on the
method of RND estimation. Jackwerth (1999) explained on
the parametric and non-parametric techniques and
proposed a semi  parametric technique which is implied
binomial trees. Bahra (1997) gave an overview of the
five techniques related to the estimation of RND and
discussed the advantages and drawbacks of each
technique. The estimation techniques used are histogram,
interpolation using observed call price, interpolating the
volatility smile, parametric techniques which is two-
lognormal mixture and finally assumed the underlying
asset is follow the stochastics process. Another major
study by Bliss and Pamgirtzoglou (2002) claimed that the
drawbacks of the different methods were either from
parametric or non-parametric methods and they proposed
an alternative way to extract the RND. Recently Figlewski
pointed out the advantages and disadvantages of a
certain technicque and claimed that it is a common practice
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to use non-parametric techniques to interpolate and to
smooth a volatility function. This paper differs from
previous studies in which it presents non-parametric
estimation methods specifically using smooth volatility
function to extract the RND.

MATERIALS AND METHODS

Limitations of Black-Scholes-Merton Model: Although,
Black-Scholes-Merton Model has been widely used to
value options but there are some limitations to this model.
Black-Scholes-Merton  Model assumes that the
underlying asset price follows a Geometric Brownian
motion with a constant expected return and a constant
drift. The asset price 1s lognormally distributed over the
time. The only unobservable input based on this model is
the volatility, in the asset’s return. Nonetheless, the
umplied volatility can be inferred by taking the option price
together with other parameters and inverting the volatility
using the Black-Scholes-Merton Model. Empirical
evidence found that implied volatility differs for each
strikes price and maturity. This 15 in contrast with the
assumption of Black-Scholes-Merton Model in which
volatility is constant across maturity. In addition, implied
volatility retrieved from the market creates a phenomenon
called volatility smile.

Volatility smile indicates that the volatility of out of
the money and in the money options are higher than that
of the at the money options. This tends to make the future
option prices different from the actual market option
prices. It turns out that option prices have high
probability of being in the money in the future and the
deep out of the money options become expensive
compared to the option prices calculated using the Black
Scholes-Merton Model. This result produces in fatter tails
of the true RND function compared with that of the
lognormal RND function. Bahra (1997) pointed out that
the convexity of the volatility smile indicates the degree
to which the market RND function differs from the
lognormal RND.

Extracting the risk-neutral density from option prices:
Standard notation used are of the Black-Scholes-Merton
model which are the variables C and P as the European
call and European put prices, respectively is the price 5,
of the underlying asset; K 1s the strike price; vy 1s the
contimuously compounded risk-free rate; o 1s the
underlying asset price volatility and T is the time to
maturity of the option. Additionally, f(s;) is the RND
function and F(S;) 1s the risk-neutral distribution function.

The value of a European call option 1s the discounted
expected value of the payoff on the expiration date, T.

This calculation is under a risk-neutral probability
and discounting it with the risk free rate:

C(T,K) = e‘fTT(sT — K. 0)f(S,)dS, (1

The partial derivative of C (T, K) with respect to the
strike price, K yields:

C(TK) % -
%: e if(ST)dST e [I-FK)] @

Solving the risk-neutral distribution gives:

F(K)= er{m}rl 3
oK

The approximation of Eq. 3 can be obtained using
finite differences of option prices observed at discrete
exercise prices in the market. Let there be option prices
available for maturity T at N different exercise prices with
k,, ..., Ky inan increasing order. Then, the approximation
of centre F(K,) on 1s obtained by using the sequential
strike prices K, K,, K,

S 2C0, }1 )

FEK, )=
( N) {Kru-l _anl

Taking the denvative a second time with respect to K
in Eq. 4 yields the risk-neutral density function at K:

2
[(K) = e a C(Tz, K) (5)
oK
In practice, the approximation of RND for a call
option, f(K) can be obtained as:

f(Kn) — ert |:cn+1 B ch 2+ Cn—l :| (6)
(AK)

While, the equations to calculate the RND puoption
is as:

F(K)=e" OP(T.E) (7
K
P.,-P
~ rt n+l n-1 8
F(KN) ) {KnHKn—l} ( )
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Breeden and Litzenberger (1978) stated that the RND
can be extracted from a cross section of option prices.
This RND approximation can be calculated if a continuum
of option prices with the same time of maturity and strike
prices range between zero until infinity are available ona
single underlying asset. Unfortunately, in the actual
market, options are only traded over a limited strike prices.
The difference between strike prices 1s too widely spaced
to estimate the density function using finite differences as
introduced in Eq. 4 and 6. This shows that the extraction
of a well behaved RND cannot be done using the mutial
data set. Researchers have suggested the use of
interpolation techniques to fill in the option values
between the available strike prices and smoothing the
volatility smile m order to reduce the mfluence of noise.

RESULTS AND DISCUSSION

Techniques for estimating the risk-neutral density
function: The RND function can be calculated by taking
the second order derivative of the option prices with
respect to the strike price if the strike price is continuous.
However, in practice, the range of the strike prices 1s
limited and subsequently the estimation of RND will not
be accurate. Therefore, an interpolation technique is
needed to fill in the gaps between the strike prices so that
a well behaved RND function can be extracted.

Shimko (1993) was the first to propose fitting
techniques to smooth the volatility smile by translating
the quoted price into implied volatility. Then, the RND can
be extracted from second derivatives of option prices with
respect to strike price (Breeden and Litzenberger,
1978). The use of implied volatility instead of quoted price
can eliminate a substantial amount of non linearity
(Brunner and Hafner, 2003). Interpolating the quoted
prices directly seems a straightforward and appealing
solution but the method produces bad results such as
recurrent violation of monotonicity and convexity
conditions. This means that the implied volatility tends to
be smoother than the option prices. Shimko (1993) fitted
the implied volatility using a quadratic polynomial
function, in which the implied volatility is the y-axis and
strike price 1s the x-axis:

o,(K)=a,+a K +a,K’ fori=1,.. N (an

where, N is the number of observed strike prices.
Campa et al. (1998) followed Shimko (1993) to fit the
volatility function with respect to the strike price but by
using a cubic spline mnterpolation. Cubic spline 18 used
because it controls the flexibility of the volatility smile
shape compared to that of a quadratic polynomial. The
cubic spline function of the strike price 1is:

fiK)=a+b(K-K)+e(K-K)F+d(K-K)Y
(12)
Next, the matrix of a polynomial parameter of a
cubic spline & = (a, b, ¢, d) has to be estimated. It can be
achieved by minimizing the following objective function:

mEi)n{ZN: W, {ci — (K, 0 + hTf”(K;@)ZdK} (13)

where, fk 3" are the strike prices where the function is
evaluated and {5* are the corresponding implied
volatilities A and is a smoothing parameter that controls
the cwrvature of the spline. The first term of objective
function is representing the goodness of fit and the
second term measures the smoothness of the spline. The
continuous series of implied volatilities with respect to the
strike price can be obtained after estimating a cubic spline
function parameter.

In a different study, Malz (1997) used a quadratic
polynomial for fitting a volatility function but used an
option delta rather than a strilke price. Option delta can be
defined as the rate of change of option price with respect

n
i=l

to the price of the underlying asset. This approach 1s used
to avoid grafting the tails onto the distribution. There are
two ways to convert the strike prices into option delta
either using” smile conversion or point conversion
(Bu and Hadri, 2007). The smile conversion transforms the
sttike prices mto the option delta by usmg the
Black-Scholes-Merton Model. The call delta is given by:

2
hlSD—an+{r—q+67K]T

B NT

ac
A=—=N(d)=0
55~ )

(14)
where, @(.) is the cumulative probability distribution
function for a standardized normal distribution and oy, 1s
the implied volatility corresponding to the strike price.

The point conversion is using a single at the money
implied volatility instead of using the implied volatility of
each strike price to convert the strike prices mto the deltas
(Santos and Guerra, 2015; Buand Hadri, 2007). The call
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delta is calculated using at-the-money implied volatility so
that the ordering is same with the strike prices. If the
unplied volatility corresponding to each strike price 1s
used to calculate the delta, 1t would create the kinks. The
equation of point conversion is as follows:

ac
A=N{d)=—
(d,) po
62
lnthlK+[rq+"‘2TMJ (15)

=0

aATM ﬁ

where, 0 41y, 15 the at-the-mone inplied volatility. Bliss and
Panigirtzoglou (2002) adopted the approaches of
Campa et al., 1998) and combined the said method with
the methoed suggested by Malz (1997). The cubic spline 1s
fitted to the implied volatility across the call option delta
instead of the strike price. By using the value of the delta
which falls between 0 and 1, the windows of interpolation
1s reduced as compared to that of using strike price wlhich
extends to infinity. A small delta which approaches to zero
represents a high strike price of an option and vice versa.
The cubic spline function in delta is:

G(A)=a, + (A= A+ o (A-AY +d (A=A (16)

The parameter ® = (a, b, ¢, d) can be estimated by
minimizing the objective function as follows:

mEi)n{ZNjwl {q — oA, @Y + ATG" (A;@)ZdAJ} (17

where, &@,@) 1s the fitted implied volatility and W,
represents the weight attributed to each observation.
Bliss and Panigirtzoglou (2004, 2002)described the weight
of a parameter as the source of a price error and proposed
Vega (v) as the weighting factor. Vega measures the
mnpact of changes in the underlying volatility of the
option price. Specifically, Vega shows the change in the
price of the option for every one percent change in the
underlymng volatility. Vega value 1s used as the weighted
factor to fit the volatility fimetion to the near the money
options (Malz, 1997). Vega is given by:

e
6 (18)
= 8, N(d, WT

v

The value of a smoothing parameter, 4 is chosen to
be approximately close to 1 in which the smoothness is

the main concern (Santos and Guerra, 2015; Lai, 2011). The
value of the smoothing parameter can be decided as A =
0.99 (Santos and Guerra, 2015; Lai, 2011). Similar to
Campa et al. (1998), Bliss and Pamgirtzoglou (2002) and
Lai (2011) used a cubic spline to interpolate a volatility
function. However, this study used moneyness of options
as the independent variable instead of the strike price or
option delta. Interpolation 13 performed using implied
volatility versus moneyness (3/K) space. Moneyness can
be defined as the probability of option being in the money
and it 1s calculated as the ratio of (S/K) where S 1s the
asset price and K 1s the strike price. This study claimed
that by using the implied volatility as a function of
moneyness, the observation is less dispersed and
continuous as compared to a function that uses the strike
price.

At this point, interpolation of implied volatility uses
either low-order polynomial or splines. The drawback of
splines is that it requires the interpolation to pass through
each pomt (implied volatility). It is shows that the spline
interpolation incorporates measurement errors and price
noise. Besides, the selection of smoothing parameter
value can be argued in which the spline curves should be
similar with the observed data points. Instead of a cubic
spline, Figlewski suggested the use of at least a fourth
order polynomial to mterpolate the implied volatility as a
function of moneyness. In addition, to allow the densities
to take into account of a more complex shape, Bliss and
Panigirtzoglou (2002) suggested to use fourth order spline
with a single knot placed of at the money options.

Generally, the procedure to interpolate a volatility
function and to estimate the RND can be summarized as
follows:

» Decide the independent variable: strike price,
moneyness or delta

s Calculate the implied volatility and independent
variable from the option prices

s Interpolate across the implied volatility in (implied
volatility/strike) space or (implied
volatility/moneyness) space or (implied
volatility/delta) space. Choose an interpolation
method using either a polynomial or a spline function

¢+ Convert the delta values to strike price using this

Eq. 19

K = Sy
exp{Nl(Ale“)G(Aljﬁ_[G(‘ii)z}T}

(19)

»  Convert the implied volatility to call price using
Black-Scholes-Merton Model
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Fig. 1: Out of the money calls and puts options available
on July 5, 2013

¢ Take the second derivative of a call function with
respect to strike price and discount the call function
using risk free rate to estimate the RND. Numerically
it can be calculated using Eq. 6

S and P 500 index options on July 5, 2013 is used as
an example. The index closed at 1631.89 and the options
contract expired 121 days later on December 21, 2013. The
options close price for each strike is calculated based on
the midprice of bid and ask. The risk free rate is assumed
to be 2.69% and the dividend 1s assumed to be 1.70%.

First, the observed prices that have midprice lower
than $0.50 is taken out to ensure the deep out of the
money options are not involved. Only out the money
(OTM) options are considered in which the options are
most liquid (Bliss and Panigirtzoglou, 2004; Ait and Lo,
1998; Kostakis ef al., 2011; Bliss and Panigirtzoglou, 2002;
Birru and Figlewski, 2012; Grith ef al., 2012; Ivanova and
Gutierrez, 2014; Kempf et af, 2015, Gutierrez and
Humpreys, 2012). Gutierrez and Humpreys (2012) points
out that the 81% options traded were OTM options and
only 18% ITM options were traded. Also, the ATM
options only used as a part of mvestment strategy such
as straddles and strangles. Figure 1 shows the out of the
money calls and puts options available on July 5, 2013.

Second, data from (strike/price) space 1s transformed
mnto (delta/implied volatility) space. The implied volatilities
and deltas are calculated using Black-Scholes-Merton
Model. The smoothing spline is used in this example in
which the smoothing parameter 1s 0.90 and the Vega 1s
used as the weight of the parameter. The umplied volatility
has been fitted using the smoothing spline throughout
the deltas as depicted in Fig. 2.

Then, the 5000 pomts of equally space delta from zero
to one are transformed mto strike price by using Eq. 18.
Extract the implied volatility from the spline function and
converted into call prices using Black-Scholes-Merton

0.30

0.25

0.20

Implied volatility

0.15+

Delta
Fig. 2: The implied volatility has been fitted using

smoothing spline
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Fig. 3: The estimated call prices and strike prices
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Fig. 4: Risk Neutral Density (RND) extracted by spline on
Tuly 5, 2013

Model. The estimated of call and strike prices are shown
in Fig. 3. Finally, compute the second derivative of call
prices to obtain RND. Figure 4 presents the RND extracted
by the smoothing spline on July 5, 2013.
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CONCLUSION

This study gives an overview of the RND estimation
using a smooth mplied volatility smile methods. The
RND can be derived from the second order derivatives of
a call option function with respect to strike prices. The
drawback of this approach 1s that it assumed the options’
strike prices are continuous. In practice, only limited
strike prices in discrete time are available. Considering
this limitation, researchers have proposed
mterpolation techmques to estimate RND accurately.
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