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Two Improved Methods Based on Broyden’s Newton Methods for the
Solution of Nonlinear System of Equations
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Absract: In this study, two mmproved methods for Quasi Newton’s method (QN) called Quasi Modified
Newton’s (QMN) of type 1 and 2, to obtain an approximate solution for systems of nonlinear equations. The
most significant features of these methods are their simplicity and excellent accuracy. Error estimation of the
methods was discussed. Some numerical examples are given for comparison reasons and to test the validity of
the methods. Superior result shows that the methods are much more efficient and accurate than the other

methods.
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INTRODUCTION

In the applied branch of mathematics many physical,
engineermng and chemical problems lead to a nonlinear
system of equations that motivated scientists to solve
these problems. Exact solutions for these systems are
hardly available, so many researchers (Newton, 1976;
Kelley, 1995, 2003; Martinez, 2000, Denms and Schnabel,
1983) have proposed different strategies of Newton
method to find an approximate solution of these
problems. Consider the nonlinear system of equation:
fix) =1, 2,3, ..., n, these may be written in matrix form:

F(x) =0 (1

where, F(x)=(f,, f,...,L Y F: D-R" convex subset of R*, xcD
and f: D~R 1s continuously differentiable in an open
neighborhoed DcR" For any initial vector x™
close to x" where x is the exact solution of (Eq. 1),
Newton-Raphson method generates the sequence of
vectors using =*%., the following iterative scheme:

+  Start with an initial guess x®
e Solvefor ] (x™+s%) =F (x)* or 8"
+  Compute x*'"= x®+5%

where, J(k) 15 the Jacobian matrix of F(x) denoted by
Ik) = F’(x). A significant weakness of Newton’s method
1s that, for each iteration a Jacobilan matrix must be
computed, so this method 13 very expensive and has the
following disadvantages:

»  Needs good initial solution x™ close to the exact
solution x*

+  Requires n*+n function evaluation at each iteration
(n? for Jacobian matrix and n for F(x))

+  I(x%) must be nonsingular for all k and J(x™) is
invertible

»  Need to compute n? partial derivative for and I"'(x*) at
each step

» To solve the linear system at each iteration require
O(n?) arithmetic operation

The advantage of this method {x*}~_that converge
quadratically to x” and the scheme above is self-carrective
when is J(x®) nonsingular. Many mathematicians
(Cordero et al., 2010, Homeier, 2005, Weerakoon and
Femando, 2000, Traub, 1976; Sharifi et al. 2016)
developed the technique
convergence rate of Newton’s method, such as the
modified Newton’s method of order three (predictor and

above to increase the

corrector). We summaries the algorithm as follows:
Start with goed initial guess (x").
Predictor: Solve 2% =x™ - F(x%)'F x® forx®

Corrector: Solve the following system for x**:

xEH D () gy g () (2)

The disadvantages of this method are:
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+ Needs good initial solution x™ close to the exact
solution x*?

e Needs n™+2n function evaluation

¢ The computation of the inverse of JTacobian matrix at
each 1iteration for the predictor is costly

e Requires n’ partial derivative at each iteration

* To solve the linear systems for the predictor and the
corrector at each iteration require O(n’) arithmetic
operation

To overcome these disadvantages and to increase the
convergence rate many scientists extend Newton’s
method to solve a nonlinear systems of equations (Chun
and Lee, 2013; Bi et al, 2009, Soleymani et al., 2014,
Papakonstantinou, 2009; Eyert, 1996; Fang and Saad,
2009) such as the Quasi Newton methods. These methods
approximate the Jacobian matrix or it’s inverse with
another matrix, (i.e., F', = B, or F!, = H, where F, is the
Tacobian matrix evaluated at the kth iteration, B, and H,
are easily computed. A well-known Quasi Newton method
proposed by Broyden (1965) called Broyden’s method or
secant method; we can use it when Jacobian matrix is
unknown or it 1s difficult to compute. Now, we will
describe the two methods of Broyden’s. The first method
is approximating the Tacobian matrix as follows. Start with
the initial solution x™. Set, B, = F'(x” in some cases they

set, where B, =T is the identity matrix. Fork=1,2, ..., m
do the following Set:

x) (1 g TRy (3)
Compute:

§0 = xBy &0y ZF(x®) F(xED)
Compute:
k — k k —
Bl - Bl + 6" - Bly™ "' Bl

Ry ™

Where m is the maximum number of iterations
allowed. The second method is approximating the
Jacobian inverse as follows. Start with the imitial
solution x”. Set, H, = (F™)™ in some cases they set
H,=T1, whereT is the identity matrix. For k=1,2, ..., m
do the following set:

k) (k1) Hk,lF(X(kil)) ()]
Compute:
s8) = xEpll 0 (@) F(xED)
Compute:

(k) (k)
s —Hyp_¢8
H, —Hk—ﬁ( k-1 )( ()

2
By

Where m 1s the maximum number of iterations

allowed The main benefits of updating formula is
reducing the number of function evaluation at each step
from n?+n to just n and require O(n®) arithmetic operation
per iteration. Dennis and Schnabel (1983) proved the
super-linearity of convergence of the sequence {x¥}",
and updating the inverse of B, from B,, using
Sherman-Morrison formula (Deng, 2011).

MATERIALS AND METHODS

We will propose two improved methods based on
Broyden’s methods B, and H, modified Newton’s method
and discuss how we approximate and for the Tacobian
matrix and it’s inverse respectively. Our purpose is to

accelerate the rate of convergence of Quasi Newton’s
method.

Quasi Modified Newton’s method of type one (QMN1):
We approximate Jacobian matrix using the first method of
Broyden’s on the modified Newton’s method Eq.2 as
follows predictor. Set:

28 = o) _ gy~ Ip (K]
Corrector compute:

D) _g (k) _ g (k) (3

where B, as in section one, to describe how Broyden’s
determied B, first we use the secant formula to obtain:

By (X(kﬂ) _ X(k)) - F(x(kﬂ)) _ F(x(k)) (6)

Now, any nonzero vector in R* can be expressed as a
combination of s* and the orthogonal complement of s®
say g, to uniquely defined the matrix B,, we also need to
specify how it acts on g.No information is available about
the change in F in a direction of ¢, so we specify that no
change be made in this diwecton (B,-B,,) q = 0 this
assumption (no change condition) (Magrenana and
Argyros, 2015), implies:

B, q =B ;q.Yqe R" s.t. (x™ —x& Mg =0 7)

Let y® = F(x*)-F(x*") and s* = x¥-y*". From Eq. 6 and
7, we obtain the updating Equation:

Using Sherman-Morrison formula, we obtain:
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Bl -Bl ¢ " -y el
CREnties

The main benefits of this; reducing number of
function evaluation at each step from n*tn to just n and
require O(n’) arithmetic operation per iteration, and reduce
the number of iterations required. The algorithm of
(QMNT).

Alogrithm:

Input, <% Tol

Let B=J x®

Compute (1) __(0) _ppR 0
Campute )2 g,

Fork=1
Compute (k) _ (k) _  (k-1)
Compute (k) _ i (k)y_ piglk-1))
Compute
-1

_ O L TS e
B ' =Bl +

et y®
Compute _ik+1) _ (k) BEIF(X(k))

Compute X(k+l) _ )E(I'H»l) _ BEIF(i(k+l))

iy

X(k-%—l) B X(k) ” <Tol, ’ stop.
2
otherwise set k=k-+1, continue looping
Quasi Modified Newton’s method type two (QMN2): We
follow the same steps in the previous subsection. We

apply the second method of Broyden’s to approximate
T by H* so, the iteration Eq. 2 becomes:

g —x® g pxNx D =g ® g e ®)
From Eq. 6 we have:
) 0y g Ry Ry )
So, the no change condition Eq. 7 becomes:

Hyq =H,_; q,¥qe R" s. . F®)-FaE My g =0
(10)
From Eq. 9 and Eq. 10, the updating formula is uniquely
given by:
%~ Hy 5%

Hy =Hy + Ly Wy (1)
2
|y
The algorithm of QMN2.
Alogrithm:
Input, <% Tol
Let B~=T x@

Compute (1) _ (0) _ HDF(X(O))
Compute (1) _ = (1) _ HOF(:E(D)

For k=1
Compute Gk _ (k) (k-1

Compute y(k) _ F(x(k))— F(x(k_l))

Compute
Hy =Hj_1 +

RGIRT N
e

2
L
Compute _(k+1) _ (k) _ Hy Fix )
Compute (k+1) _ 5 (k+1y _ g, pelk+1)y

If Hx(kﬂ) _L K | <Tol, * stop.
2

otherwise set k=k+1, continue looping
RESULTS AND DISCUSSION

Performance evaluation and comparisons: We give some
numerical examples to test the validity of the proposed
methods and for comparison reasons. For all the examples,
we implement all the methods described above.

Example 1: Alipanah and Dehghan (2007), Mirzaee and
Bimest (2015) and Borzabadi and Fard (2009). Consider the
nonlinear Fredholm integral equation:

1
n. 1 1
g -G [

2
o 1187 ()

Solution: Using Simpson’s rule with 11 equally spaced
nodes (n = 10) to approximate the integral part, so, h = 0.1,
then we have:

0.1 1 1
=— St st
23) 1+g%(0) 1+g%)

1
B frvers

0lJrg (t) (12)
5

4

1 1
Ay 2y
1+ g% (tyiy) 1+ g (ty)

i=l i=1

Substitute in Eq.12 to obtain the corresponding nonlinear
system:

F(E)=(f(E).§(E).... o) =0

where:
i 0.1 1 1
£ ()= 3y — 23+
n(©=Cn 8)+2(3) 1+g2(0)+1+g2(l)+

(13)

3

4
D IR e

2 PR
i=1 1+g7(ty; ) pury T+g"(ty)
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Table 1: The error analysis for example 1
Method E; E, E.

Newton’s method 8.7844x10* 2.3245x10°% 2.4768<1071
Broyden’s method 1~ 8.1263x10° 4.2469=10° 1.0503x10%
Broyden’s method 2 6.4953x10° 3.3565%10° 6.5622x10°
Proposed QMN1 6.0196x10° 4.2781x10"! 8.9425x10"
Proposed OMN2 3.6977x10° 2.6257x10"" 7.9462 x 107

Table 2: The error analysis for example 2

Method Eq E; Eq

Broyden’s method 1~ 5.2766x10° 4.9476x10° 8.6654x107
Broyden’s method 2 4.6086x10° 5.4138=10° 1.1486x10°
Proposed QMN1 4.4228=10% 1.6971x10" 1.0000x%10:
Proposed OMN2 7.6575%10% 2.2398%10° 2.8000=101

E=(g, (), ..., g t,=s,=mh01lmm=01,2, .., 10,
Start with. £ (0) = (0.1, 0.1,..., 0.1)". Table 1 shows the
absolute error.

Example 2: Broyden Tridiagonal Function (More et al.,
1981). Consider the nonlinear system H(x) = 0 where:

hy(x)=(3-2x;)x; —2x, +1
hy(x)=(3—%,)x; — %, 2x3 +1
hy(x)=(3-%3)x3 %, +1

set x™ = (1, 1, 1. Table 2 shows the absolute error
E, = Ix¥x* for some iterations of our proposed methods
and some other methods. The numerical results in
Table 1 and 2 of the above two examples show that the
proposed methods (QMN1 and 2) 1s very comparable and
competitive to Newton’s and Broyden’s methods. Also,
we observe that the errors of our proposed methods
decreases rapidly as number of iterations increases.

CONCLUSION

Researchers proposed two improved methods based
on Quasi Newton methods called Quasi Modified
Newton’s methods type one and two. The proposed
methods need not to compute the inverse or partial
derivative. The given numerical examples have illustrated
the efficiency and accuracy of the proposed methods. The
proposed methods converge faster than the Quasi
Newton method and more attractive than Newton’s
method.
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