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Abstract: Investigating the convergence of some selected properties on block predictor-corrector methods and
its implementation will be considered. This mvestigation will provide some justification and theorems that
guarantee the convergence of the method. Some aspects of the block predictor-corrector methods to be
investigated includes order, convergence and implementation. However, predictor-corrector methods attracts
a lot of computational benefits which guarantees step size variation, convergence criteria (stopping criteria) and
minimizing error. Agam, existence and umqueness of the method will be recognized. Implementation of this
approach will depend on the principal local truncation error on a pair of predictor-corrector method of Adams

type formulas either in P(EC)™ or P(EC)* mode.
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INTRODUCTION

According to Gear (1971), the convergence of

predictor-corrector methods was imquired m  the
prestigious article of Mises, this was accompanied by an
overwhelming number of papers amending the error
bounds and enforeing the concept to other autonomous
multistep methods. Generally, convergence proof for
differential equations, not withstanding was first started
by Dahlquist (1956) who established necessary and
sufficient conditions for convergence. Also, major
significance was presented in the proofs by the ideas of
Butcher, implies that multistep expressions are composed
as single-single step expressions in an advanced
multidimensional space. Moreover, for sensible
convergence of computational methods, the differential

equation problem:
y ()= £ (x, y), y(a) = &, x& [a, b] and £ R<R™R= (1)
must possess a unique solution. Consequently, we arrive

by adopting the assumptions stated below. The solution
to BEq. 1 s generally written as:

PIMCHAES Y Y =

where, the step size is b, o = 1, o, 1 = 1, ..., j, P are
unknown constants which are uniquely specified

such that the formula is of order j as discussed by
Akinfenwa et al (2013). We assume that feR s
sufficiently differentiable on x<[a, b] and satisfies a global
Lipchitz condition, 1.e., there 1s a constant L >0 such that:

f(x,y)-f{x,¥)|<Lly-¥[. ¥y. ye R

Under this presumptuousness (Eq. 1) assured the
existence and uniqueness defined on xe[a, b] as well as
viewed to fulfill the Weierstrass theorem, for example
(Gear, 1971; Lambert, 1973; Xie and Tian, 2014) for details.
Where a and b are finite and y® [y,%, v¥,, .., y¥] fori=0
(I3 and f=[f, f,, ..., f]", originate in real life applications
for problems in science and engineering such as fluid
dynamics and motion of rocket as presented by
Mehrkanoon et al. (2010).

According to Hairer et al. (1987), the convergence of
variable step size Adams methods was considered by
Piotrowsky and Stability. To establish convergence of
the general case, the vector ¥, = (Vaw - Y Vo) Was
presented. Tn proporticnality to:

Y, =(A®DY, +hd(x, Y,h)i=0
the method:
k-1 e
Yo EJ -1 %Yae = hﬂ+k-121 =0 BJﬂfn+J

then certainly becomes equivalent to:
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-Y1+1 = (A ® I)Yn + hn+k71¢n (Xn=‘ Yn’ hn)
where, A, is referred to as the companion matrix and:
9, (%, Y, h) = (e ®Dyrg, (x,, Y, h)

The value | = U, (x,, v,, h,) 18 implicitly specified as:
k-1 k-1

w = 2 B]nf(xn+j’ yn+]) +Blmf(xn+k’hw_ 2 C'Ljn yn+]
i=0 i=0

where the coefficients ¢, and P, are mn actual fact
depends on the ratios w; = h/h, ; for:

i=n+l..,n+k-1
Furthermore by letting:
Y(Xn) = (y(Xn+k—1)’ e y(XnH)’ Y(Xn ))T

the exact values can be approximated by vy, The
convergence theorem can now be phrased as accordingly.
Afterward, the idea of convergence shows the attribute
that by making use of a sufficiently small step size and
precise calculation, the numeric reselution can be formed
arbitrary close to the exact reselution. In a multivalue
method, there is an initial parameter ¢, or y, which
sometimes may not become wholly defined by the starting
parameters. For instance, a two-step scheme of a first
order equation, given y, but in addition require to
recognize y,. Subsequently, one or some computational
approach will definitely initiate errors into y, and perhaps
as well v, hence, it is very important to permits these in
the explanation of convergence whenever 1if 1t must be
pragmatic. Gear (1971) for details.

Definition (convergence): The multistep method (Eq. 2) 1s
said to be convergent, if for initial value problems (Eq. 1)
meets the requirement of unique solution stated above:

y(x)—y,(x) > 0forh -0, xe[x,, X]

if the 1mitial values satisfy (Gear, 1971 ):
yix, +tih) -y, (x, +ih) > 0forh =01 .., k-1

Definition: A multistep (multivalue) method for first order
equations is convergent if, for any differential equation
satisfying a Lipschitz condition, the computed solution
va[e,] converges to v(x) [a(x)] umformly in O<x<b as
v,~y¥(0) [a,~a(0)] and n- e with h = x/n (Gear, 1971).

Definition: A multivalue method is g-convergent for pth
order equations if, for any pth order g-differential
equation satisfying a Lipschitz condition, the computed
solution 1s ¢, such that:

o, — Ot(X)”E_qH -0

unformly for O<x < b as:
o, — oz =0

and n-e with h = x/n. This is called a 1-convergent
method sunply referred to as convergent (Gear, 1971). The
next guarantees  the
convergence of Eq. 2.

A multistep (multivalue) method 15 stable for first
order equations 1if, for any first order equation satisfying
a Lipschitz condition, there exist constants K and h, such
that:

definitions and thecrems

Yo = Va

<Ky, -]

. .
o, — oth < KHotU - otUH

for all O<x<b and all h = (x/n)e(0, h;) where v, and
va| o a, | are two numerical solutions (Gear, 1971).

Theorem assume that:
k1 i
¥oue + EJ = 1G‘Jn yn+_| = hn+k—1 ZJ = DB]H fn+]

is stable of order p and has bounded ceefficients ¢, and
B, The starting values satisfy:

[V (x0) = Y, | = OChy)

The step size ratios are bounded (h,/h; ,<€). Thus, the
method is convergent of order p, i.e., for each differential
equation y(x) = f(x, y), y(o) = ¢ with f sufficiently
differentiable the global error satisfies:

HY(XD) - YDH =Ch? for x_ <X

where, h = max h (Hairer er al, 1987). Again we
justifies the essence of convergence on multistep
methods using the following defimtions and
theorems.

Theorem 2: If the multistep method (Eq. 2) is
convergent, then it is necessarily stable and consistent
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(e, of order 1: p (1) =0, p (1) = 0 (1) as seen by
Hairer ef al. (1987). Thus, from the above defimtions and
theorems, investigating the convergence of some selected
properties on block predictor-corrector method demands
that some criteria must be satisfied to guarantee the
implementation of this method as sited by Gear (1971) and
Hairer et al. (1987). Therefore, the main objective of this
paper will be to investigate the convergence of some
selected properties on block predictor-corrector methods
otherwise known as P(ECY" or P(EC)" mode for solving
ODEs.

Order of block predictor-corrector method definition 4:
If the L, operator 1s defined by:

k

L, (y(0) = Z(aﬁ@‘-“” + %Biy% —ih)}

i<
then the order is the largest integer such that:
L, (y(x)) = 0(h™)

whenever, y=C,,. If we assume that yeC,,, we can
substitute Taylor’s series with remainder terms of O (h™")
for y (x-ih) and h'y™ (x-ih) to get:

r+1

Ly (y(x) = ¥ Chly@ )+ 0(h™)

q=0
Where:
> gep
= q! a
c, = E('P e pTHIZAZD
-1 -1

a& + Bi

L% q! mmm!}

This demonstrates that the order is checked by the
coefficients of the method. If we define the polynomials
p and o as earlier, it is observe that:

(Ma@(&ko@)l_l

C, = -q2p

ﬂ[&%j(a-kp(a)){;j[a%]qp(a-k p@)}

From the above, it complies that if the order r>p:

k=1

pd)=0

p(=0

(3)
P (=0

p* o) =0

In converse manner, if Eq. 3 agrees, the order 1s 2p
afterward C, = 0 for q<p. It is notice that this specifies the
order of a method established on a corrector exclusively
that is one in which the formula is explicit or the corrector
15 reiterated to comvergence. Thus, the order of a
multivalue method or a predictor-corrector multistep
method obviously has to be determined in terms of the
result of a differential equation. This can be specify in
accordance with Gear (1971).

Definition 5: If a (x) is the correct value of the vector a for
some h at time x and then define:

aqy = Aa(x —h)
8y = 8 T IF@E,)
a(x) =a,,

then the order of the method pth order equations is the
largest r such that if F represents any differential equation
of order p with a solution C,,;:

iy, —a(x) = 0(h™)

Thus, it 15 seen that the order of the corrector is
greater the order of the predictor by unity for each one
corrector iteration up to the order of the corrector.
Nevertheless, suppose a predictor-corrector method can
be showed as a multivalue method (as it can be if p = 1,
assume f rely y on and x only or whenever bounds on the
predictors fory, ..., y*" are met), the order of the predicter
can be described from the form of the matrix A if the
scheme 1s set m the normal form. Suppose the
predictor-corrector method possesses order r, then the
first r+1 columns of A take the form:

D 1]
1 . .. '
rF

0
1
L 0 .
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Thus, indicates that, the Pascal triangle matrix in the
upper section and zeros m the lower section will be form
Gear (1971).

Theorem 3: Tf the multistep method:

k P
2 0"1Ynﬂ + B1 h_fnfl = 0
P

1=0

is convergent for order equations, then the order of:

i=0 1

k »
2[051)(114 + B1 hifnﬂ ] =0
] |

1s at least p (Gear, 1971).

Theorem 4: The order of a predictor-corrector method for
first order equations must be greater than or equal to one
if it is convergent.

Proof: Suppose the polynomials specifying the predictor
and corrector method be p, 0 and p*, o*, severally.

Theorem 3: Proved that the order of the corrector must be
at least unity, the solely case to look at is a predictor order
of minus one and a single correction of order one or
greater. Nevertheless, the 1s normalize so that ¢, =, = -1.
From the explanation of order presented by Defimition 5:
gives:

g[a;‘y(x—ih)+hﬁgy(x—ih)]+ @
b, f| [ oy(x —ih)+ hBy(x —ih) ||~ y(x) = 0(h™")

for any differential equation Y = f(x, y) whose solution
Y (x)eC,,,. Considering the first order equation for this
arrives at:

g {p* (eh ) +ha’ (eh )+ h§3; [p(eh ) + hcr(ah )}} = O(hr+1 )
()
Assume £ is aroot of:

P (&)+ho (£) + (&) +h'Bo()=0  (6)

theny, = £ 1s a solvent of the predictor-corrector method.
Studying (Eq. 6) for an answer of this type £ = e™+A
where, A is lowly. Thus, obtain by replacement:

p:(eh)+p*(eh)+h0*(eh)+
h, p(e )+ h*Byo(e" ) =0(A” +hA)

7

The final four terms of the left-hand side are O (h™") by
Eq. 6 and p"(e"+p"(13+0(h) thus:

A= 0(A2+hA+h”‘)

P (1)

Through Theorem 3 the corrector possesses order 1,
thence p*(1) = 0. Subsequently, the method converges, it
meets the root condition that “A Q-convergent
Multivalue Method satisfies the g-root condition™ and so
p* (&) does not possess a double root at £ = 1. Therefore,
P*(1)#0. Consequently:

A=Kh™ +0(h™*) k#0
Suppose:
y, =& :(eh +Kh+ O(hz))n
=e"" + Kh+0(h)’

where, x = nh. Finally, given the initial value problem
v = v, together with initial condition ¥ (0) = 1 and
initiating conditions y; = {(e"+A), Ozizk, converges to the
answer e’ assuming the order of the predictor 1s minus one

as required (Gear, 1971).

CONVERGENCE OF BLOCK
PREDICTOR-CORRECTOR METHOD

Assume P specifies the practical application of the
block predictor, C a block corrector practical application,
v, with E as the evaluation practical application of f with
respect to given numeric values of its parameter. Let be

computed from the block predictor:
Ek =T Vi

is computed one time and employ the corrector at one time
as well to get, y%, thus describe the computing as PEC.
Further, appraisal of:

fn(?k =X, ygik
succeeded by another practical application of the
corrector gives y?%, and thus, denoted by PECY.

Implementing the practical application of the block
corrector many times can be described as PEC™. Since, m
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is constant, vy is accepted as the computational solution
at X At this point, the last computational value for .,
1s preferred as:

L5 = 00w, v )

and this will foster whether or not to execute. Suppose
this execution 1s concluded, the mode 15 denoted by
P(EC)* or P(EC)" E. Eventually, the decision clearly moves
the next step of the execution, when both predicted and
corrected numerical values for Y,,,., will rely on whether
f. 18 accepted as £ or £3°. Finally, for a given m, P(EC)™
or P(EC)™ E mode utilize the corrector the same number of
times; only P(ECY* E requires one more evaluation per
step than P(EC)™ as discussed by Lambert (1973, 1991).
The justification of block predictor-corrector method
can be established with the following defimtion and
theorems.

Definition 6: A method for a pth order equation 1s called
consistent if its order 1s at least p. The effect that is
plausibly true is that g-stability and consistency are
necessity and sufficient conditions for g-convergence of
the differential equation (Gear, 1971).

Theorem 4: A stable consistent multivalue method for
first order equations is converge-nt (Gear, 1971).

Theorem 5: If a multivalue method for first order
equations has order r and if the starting errors e, are
bounded by D', the error at time x =Nh is bounded by:

el SDC—hr(e°0°1H )+ Dh'ce®c! (8)

0

if the solution. €' eC,.,. Lipschitz condition on y in that
region, a necessary and
convergence is that:

sufficient condition for

\p(y(x),x,o) :f(y(x),x) &)

Equation 10 1s called the condition of consistency.
Since, by suitable choice of initial conditions, Y (x) can
take on any value for a given, x (Eq. 10) will hold for any
v in the form (Gear, 1971):

w(yx,0)=1(y.x)

Theorem 6: If (v, x, h) satisfies a Lipschitz condition in
1., then the method given by one step method is stable
(Gear, 1971).

Theorem 7: Let {y,,,} be a sequence of approximations
of'y,,, obtained by a PECE... method. Tf:

of
ay(

Xn+1’ Y) S L

(for all y near y,., mcluding y%,v%,.) where L satisfies the

condition L<1/|h6,|, then the sequence {y7]} converges
tO Yn+1-

Proof: The numeric solution satisfies the equation:
-1 -t
yn+1 = Eaiynﬂ +h6[| f(xn+35yn+1)+h26ifn+1
i=0 i=0
The corrector satisfies the equation:

yflnlrlj = ia1Yn+l + heﬂ f(xn+_|>yn+1)+ h281fn+1

1=0 i=0

Subtracting these two equations, we obtain:

]

Applying the Lagrange mean value theorem to arrive at:

Yn+1 7y§n:1+1) = hBU U f(XnH: Yn+1) 7f(xn+1= Yr(:ﬂ)

Yan _yin:;rl) = hBu (Yn+1 _yr(ln-ﬁ)ﬁ(xnﬂiy*)

ay
where, ¥ <y <y,,. Thus:
o |0
Yor1 — YE,HH) S|1'160| Y 7Y£1+3 g(xnﬂ,y)
ShL|60‘ Yan 7Y$3
S[hL‘euHm Yan 7Y£1D+)1
Now:
limly,,, - %, -0
If:
hL|B,| <1l or L <L
h(8,|

This means that the conclusion of Theorem holds as
seen by Jain et al. (2007).

IMPLEMENTATION OF BLOCK
PREDICTOR-CORRECTOR METHOD

Holding to Jain et al (2007) and Lambert (1973,
1991), the implementation in the P(ECY* or PEC* E mode
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becomes significant for the predictor-corrector method, if
both are individually of like order and this requirement
might makes it necessary for the stepnumber of the
predictor method to be one step hugher than that of the
corrector method. Therefore, the mode P(EC)* or P(ECY*E
can be otherwise be called predictor-corrector method
which 18 now formally examined as follows form =1, 2, ...:
PEC™

yEH‘] + ZC(. yn+] h281 frEn:l]’ fr{ﬂ _f(xnﬂ’ y[S])}:

j-1
yerl+ 2(1 vl =ng £l +h261fn'f]], §=0,1,..,m-1
(10)
P(EC)"E

ynﬂ+2ay§i{ h261 L =10 v,

yns:Jl] + ZaiyEI'H hB] fl’E'H +h281 n+]’

§=01..,m- lfnﬂ:f(x [m])

n+j? Yn+]

Noting that as m-ee the result of evaluating with
either of the above mode will slope to those given by the
mode of comrecting to convergence. Moreover, predictor
and corrector pair based on Eq. 1 can be applied. The
mode P(EC)™ or P(EC)* E specified by Eq. 11, where h is
the step size. Since, the predictor and corrector both have
the same order p, Milne’s device 1s applicable and
relevant. The following theorem demonstrate adequate
condition for the convergence of P(EC)* or P(EC)™ E. In
cases where C,.,, C,., are the computed error constant of
the predictor-corrector method, respectively. The
following consequence holds.

Proposition: Suppose the predictor method have order
p* and the corrector method have order p. Then if p*>p
(or p*<p with m>p-p)*, then the predictor-corrector
methods possesses the same order and the same
PLTE as the corrector. If (p*<p and m = p-p*), then the
predictor-corrector method possesses the same order as
the corrector but different PLTE. If p*<p and m<p-p*-1
and then the predictor-corrector method possesses the
same order equal to p*+m (thus less than p).

Specifically assume the predictor has order and the
corrector has order, p-1 and the corrector has order p, the
PEC answers to get a method of order p. Moreover,
the P(EC)™ or P(EC)® E scheme has always the same order
and the same PLTE as discussed by Lambert (1973, 1991).
Connecting (Faires and Burden, 2012; Lambert, 1973,

1991), Milne’s device stated that it is viable to estimate
the principal local truncation error of the explicit and
implicit (predictor-corrector) method without estimating
higher derivatives of Y (x). Assuming that p = p* where
p* and p defines the order of the predictor and corrector
methods with the same order. Directly, for a method of
order p, the principal local truncation errors can be written
as:

*

o h(p+1)y(p+1)(xn):y( MJ) W, +O(hp*2) (1

p+l

Also:

C,. hy* " (x, )= y(xnﬂ)—CnJrJ +O(h‘”2) (12)

where, W_,, and C,,; are called the predicted and corrected
approximations given by method of order p while C*
and C,,, are independent of h. Neglecting terms of degree
and above, it 13 easy to make estimates of the principal
local truncation error of the method as:

p+1hp“yp+1 (Xn): Cpﬂ W

— C X
* n+j n+]
C:p+1 o Cp+1

Noting the fact that C.,#C,,, and W, ,#C, ;. However, the
estimate of the principal local truncation error (Eq. 13) is
used to ascertain whether to accept the results of the
current step or to reconstruct the step with a smaller step
size. The step 1s accepted based on a test as ordered by
Eq. 13 as in Uri and Linda (1998). Equation 13 is the
convergence criteria otherwise called Milne’s estimate for
correcting to convergence. Furthermore, Eq. 13 ensures
the convergence criterion of the method during the test
evaluation.

CONCLUSION

Tnvestigating the convergence of some selected
properties on block predictor-corrector method have been
properly analyzed. Block predictor-corrector methods is a
compendium of Adams family of the predictor-corrector
methods which can be implemented i P(EC)™ or P(ECY®
mode as shown above by Faires and Burden (2012),
Lambert (1973) and Uri and Linda (1998). All of these
sited above favoured the convergence of block
predictor-corrector methods and its implementation for
solving nonstiff ODEs. Moreover, the convergence of
some selected properties of block predictor-corrector
methods possesses the same order, thus, necessitate that
the stepnumber of the predictor to be one step greater
than the corrector method. Agamn, the principal local
truncation error of both the predictor-corrector methods
are considered in the building for the implementation
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and evaluation of maximum errors. In addition, the
implementation is achieved with the support of
convergence criteria (stopping criteria). This convergence
criteria decide whether the result 1s accepted or repeated
as discussed by Uri and Linda (1998). Finally, the
implementation of this method comes with many
computational advantages as mention previously by
Faires and Burden (2012) and Gear (1971).
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