Tournal of Engineering and Applied Sciences 11 (12): 2750-2754, 2016

ISSN: 1816-949%
© Medwell Journals, 2016

Time Fractional Wave Equation in the Caputo Sense
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Abstract: In this study, we consider the wave equation of time fractional order in the sense of Caputo with
mnitial conditions, Neumann boundary conditions and force term.
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INTRODUCTION

In this study, a nonhomogeneous mitial boundary
value problem for the time fractional wave equation was
treated. This problem was obtained from the
nonhomogeneous wave equation by replacing the second
order time derivative by a fractional derivative of order
1<g=<2 in Caputo’s sense. In this research, we solve the
nonhomogeneous wave equation with fractional time,
mmitial conditions and Neumarnn boundary conditions. The
classical model of the wave equation s based on the
Newton's second law and sometimes we cannot apply
this law and we have to use the nonhomegeneous wave
equation with time fractional. The objective 1s to make use
of the concept of fractional derivative of Caputo m the
solution of the wave equation, then we construct the
formal solution of the problem of initial conditions and
boundary conditions by the method of separation of
variables and Fourier series for characterizing a
complete orthonormal system. Finally, we will apply a
theorem for finding a unique solution to the problem. The
mitial-boundary value problem for partial differential
equations of higher-order mvolving the Caputo fractional
derivative was studied by Amanov and Ashyralyev.
Kahlout et al. (2008), a time fractional partial differential
equation was considered where the fractional derivative
15 defined in the Caputo sense. Hemeda (2012), they
presented an efficient treatment of the homotopy
perturbation method for linear and nonlinear partial
differential equations with fractional order. Marin et al.
(2014a-c), they treated a nonhomogeneous subdiffusion
heat equation of fractional order with different
initial-boundary conditions. Parsian (201 2) they proposed
a new approach in time fractional wave equation, the
equation 1s more general than their equation because we
work in two dimensions and with force term. Salman was
treated fractional order differential equations with an

Adomian decomposition method. Olayiwola was proved
the generalized Taylor series n terms of fractional order
derivatives.

MATERIALS AND METHODS

Preliminary notions: In this study, we present some
basic defimitions and prelimmary data that are used
throughout the document.

Definition 2.1: Here we define the following functions for
complex argument zeC . The Mittag-T.effler type functions
are defined by:

=)

1
E(n=%Y—_—%
(2 §r<aj+ﬁ)
E,,0=3—2

=y —
B S+ B

s =27, ,(cz%)

where, (eC and ¢, p~0 is Euler’s Gamma function defined
for any complex number I'(.) with a positive real part as:

I(z):= j: t=dt

Note that these functions are generalizations of the
exponential function base e as ” :Ej-’iozj /jt and jl =T

G+,

Definition 2.2: If g (t)eC [a, b] and a>0 then its
Riemann-Liouville fractional integral is defined by:

t
o _ 1 g(s)
Lglt) = Ia) 7@ _S)l—a ds
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Definition 2.3: The
derivative of order ¢>0 of a continuous function g

(a, b)~R 1s defined by:

Caputo-Djrbashyan  fractional

[:J gt~ 15,5 ™(t)

where n = [a]+] (the notation [a] denotes the largest
integer not >a).

Lemma 2.4: Srivastava and Trujillo (2006), Let q=0 and
b(t) a function of absolute value integrable on an interval
[0, T] (namely, (1) is integrable on [0, T] or d()eL,[0, T]).
Then:

15.,15,0(8) = T5776(t) =13, T7. () L
is satisfied almost everywhere (i.e., except in a set of

measure 0) on [0, T]. Further, if ¢(t) 1s continuous 1n the
mterval [0, T] (dp()eC [0, TT), then (Eq. 1) is true and:

ay . B
[dtj I5,0(t) = ¢(t)

for all te[0, T] and «==0.

Theorem 2.5: Goren et al. (2014), Let ¢p(t)e L, (0, T). Then,
the integral equation:

Y t c—1
o) :¢<t>+@10 (-7 g(Tir

has a unique solution @(t) defined by the following
formula;

9t = (t)+ v el Vol

where e,'” is a Mittag-Leffler type function given in
Definition 2.1.

Wave equation model: We consider the equation:

i N 2 *W o'W (2)
(dt} W=n [sz + ayz ]Jr Fix,y.0)

where O<x<a, O<y<b, O<t<Tg<2 1s the differential
operator in the sense of Caputo, (d/dt)” 1s the propagation
speed of the wave, 1 18 the force term. The problem is to
find the solution F (x, y, t) of Eq. 2 wlich satisfies the
conditions:

IW(0, v,1) _ dW(a,y,t)

=0,0=y<b,0=st=T

ox dx (3)
W00 _ Wb oy caparsT
gy dy

W(X:Y:O) = q)(X:Y)a (4)
Wi y,0)=0xy),0<x<a<y=b

RESULTS AND DISCUSSION

Theorem 4.1: If the differential Eq. 2 satisfies the
boundary and initial conditions (Eq. 3 and 4). Then the
solution of the problem is unmique and has the form:

W@%Q:iﬁ%&ﬂgﬂ%+mw«ﬁwﬂ%+
- (5)
Ful ~At =07 (00U, (x,¥)

[ M

Proof: We look for a solution W (x, vy, t) of the form
(Eq. 15). We defmne the linear differential operator L:

LU =-n%A°U (6)

where the function U is continucusly differentiable and V*
1s the Laplacian m dimension 2 defined by:

AU = ’u + U
" Ayt

The operator L. is defined over some subset of the
vector space L* (0, a)x(0, b) of the functions U (x, y) with
(x, y)e(0, a)x(0, b) such that the function |U(x, y)|* is
integrable on(0, a)=(0, b). In other words, the domain of
defimtion D; of the operator L consists of all functions
Ulx, y)eL” (0, a)<(0, b) satisfying the boundary conditions:

dU(0,y) _ dU(a,y)

~0,0<y<h

ox ox (7
dU(x,0) _ dU{x.b) _00<x<a

dy dy

and whose images. LU€eL’ [(0, a)x(0, b)]The eigenvalue
problem is posed as follows: We have to find the values
of the parameter A such that the equation:

LU = AU ()

has nontrivial solutions mn the domain ;. These functions
are the eigenfunctions of L. Given the Eq. 6, we see the
Eq. 8 is equivalent to:
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V2U+%:0

Now, let V= A/m’. So, the equation is written as
V2U +v2U =0 ©)

To solve Eq. 9, we use the method of separation of
varlables, we assume a nontrivial selutien m the form
Ux,y) =X (x) Y (). Replacing this into Eq. 9, we get:

XY+ XY W+ v XEYg =0 10
if we divide both sides by X (x) Y (y) it must be:

X' YY)
X0 Yy

in this way:
X0, Y o
Xx) Yy

Since, the left side depends only on x whereas the
right side is independent of x, both sides must be equal to
a constant. Therefore, we have:

X'(x)+ WX (x)=0 (11)

Y'(y)+ pYiy) =0 (12)

Where, p’ = V’-i’°. The corresponding solution to Eq. 11
1s given by:
X(x) =0, COSUX + O, SINUX

Due to boundary conditions we obtan X' (0) Y
(y)=0=X (a) Y (y), O<y<b. We must find a nontrivial
solution of (Eq. 11), we see that X' (0) = 0, X' (a) = 0,
respectively so that we have ¢, = 0, &, # O and sin pe = 0.
The latter result gives p=mm/et, m =0, 1, 2, ... Note that p
= 0 is also an eigenvalue. Accordingly:

X, x)=0a,cos e ,m=012..

2

Analogously, for a nontrivial selution Y taking p* = V*-u
we have:

y(¥) =B, cospy + 3; sinpy

Applymg the homogeneous boundary conditions, we
have B, = 0, B, # O and sin pb = 0. So, we see that Y, (y)
Bucos ny/b, n=0, 1, 2, ... Therefore, the solutions of the
Eq. 9 can be written as:

Xcosm;—y,m,n =0,1,2.... (13)

U (%, 9) = ¥ GOS0

Where, v, for each of the corresponding eigenvalues:

2 2
2 | m I 2
(2
for which Eq. 9 is expressed as:

aml. 2
A, =NV,

thus, we define A, = A, U,, = U,and vy, Then:

LU, =AU, U, eD,, k=12,

These eigenfunctions of 1. can be chosen orthonormal
with:

Ve = (14)

3
o

therefore:

ah
(U U [ UL eyl Gy dydx

b
4% mAx AKX MEK  mTx

= —_[_[cos cos cos cos dydx
abyy a b a b

=8,,m,,m.n,,n,=L2,..

{1} is a complete set of L* [(0, a)<(0, b)] and each
function u (x, y)eD, can be represented as a series:

ux,y) = i (u, U, }Uk (x,v)
k=1

The solution of the problem in Eq. 1 that satisfies the
initial conditions and boundary conditions can be
written as:

Wix,y,1) = i U, (T (0T, = (W U,y (15
k-1

for t=0. To find the fractional differential equation for
functions Ty(t), the solution (Eq. 15) 1s substituted mto

Eq 2
co d [v A
;ul(x,y){[dt) nm}

ST LU, (x,3)+ FCx, y.1)
1=1

ST AU G y) + eyt

1=1
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Now, taking the scalar product of each side of this
equation with an eigenfunction U, (x, y):

> (v, )[ dj T
—ZTl(t)Al{Uk,Ulw(Uk,F)
1-1

Now, using the orthonormality of eigenfunctions, we
obtain Eq. 16:

d o
(E} T(DAT, =L, (1) (16)

where f, () = {U, . v), F(x, v, th, k=1, 2, ...
applying the imtial conditions (Eq. 4) to Eq. 15:

Now

W, 1,00 = 0(x,3) 3 U, (x, 99T, (0)
k=1

Where:
Tk (0) = (W(Xa y,O), Uk (Xa Y)) = (¢(X3Y) 3Uk (X: Y)>

Wiy, 0) =90, y) = Y U, GoyTL0)
k=1

Where:
T (0) = (W, (x,y,0), U, (x,¥)) = {0, )U, (x,¥}}

For the initial conditions T, (0), T}’ (0), note that the
solution of the corresponding homogeneous problem
(Eq. 2), (i,e, with F (x, y, t) = 0) has the form:

Wy, = S U, YT, (0
k=1

where Ty (1) = Ty (0) By, CAEOHT 1L (OB (AL s
the general solution of the corresponding homogeneous
equation to (Eq. 16) (since f, (t) if { = 0) for each A, which
1s the same as for the nonhomogeneous equation:

WH(X> Y=0) = W (X:- Y: O) = ¢(X= Y)
Wt,H(X’ y70) = Wt(xa yao) :(P(X, Y)

Wi (x,1,0) = 3 U, (x,9)T, (0) Wi v,0) = x,y) (17)
1=1

Woi(x,%,0) = S UG )T, g1, (0) Wi (., v,0) = @, 3)
1=1

(18)
taking the dot product of dpand U, and ¢ and Uy

T :<Uk7¢> (19)
T, @) :(Uk7(p> (20)
Forn,, m,>1:
T.(0)= J7 _[_[q)(x y)cos T o5 X dydx
TkO) (J.J.(p(x y)cos Sﬂd}’d}(

To find the solution of the Cauchy problem for Eq. 16
with the initial conditions T, (0), T, (0), we have to apply
the Lemma 2.4, then:

d [v A
[E} T, () =12 °T/ ()

Substituting this result in Eq. 16, the following equation
15 obtained:

lglan(t) + AT (=1, (1)

Applying the operator 1,,” to this equation, we have
the following Volterra integral equation of the second
kind:

Tk (t) ~ T (0)—tT(0)+
(21)

- DT (Ddt = IZ,f, (1)

F( )
Using Eq. 21:

E,plct™)z- 1" dt=2"""E (2"

@ Tl

?B)ZEQ,MB(Z) =E p2)

and according to Theorem 2.5, it follows that:

T, (t) = T(0E, , (~At*) + T (DE,, , (-A t*) +
t a1 (22)
I(t —T) E (-AL(t -0 (T)dT

For T, (0) and T,' (0), we can expand the functions ¢
(x,y)and ¢ (x, y) mthe form of a Founer senes along with
the functions U, (x,y), k=1, 2,

83 = 3 0,U, (5,9, 90xy) = Y @ U,y) (23)
k-1 k-1
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Where:
aprh
b = [ [ 00U, (xy)dydx

a b
@ =] [, 00U (. y)dydx
So, using Eq. 3, 20 and 22 we see that:

T, (t) = Ea,l(_Akta)q)k + tEa,Z(_Aktm)(pk +
a—1

t
[t E (A0 -0 (Tde
o]

Now, substituting this in Eq. 15, we obtain the formal
solution of the problem given by Eq. 2 that satisfies the
given initial and boundary conditions, that is:

Wix,y.t)= E(Em(*/\kta)q)k HHE g o (AT )y +
=1

a-1

t
[t-0 B, AL -9 (@D, (x,y)
o]

Where:
mmy
b

2 wix
U (X, y)=———cos——cos
(X, ) Iy a

CONCLUSION

We obtam a unique solution to the wave equation of
time fractional order in the sense of Caputo with initial
conditions, Neumann boundary conditions and force
term.
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