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Abstract: This study presents an exact three-dimensional free vibration solution for sandwich cylindrical panels
with functionally graded core. Material properties of the FGM core are assumed to be graded in the radial
direction, according to a simple power-law distribution in terms of volume fractions of the constituents.
Poisson’s ratio 1s assumed to be constant. The governing equation of motions 1s formulated based on
the 3D-theory of elasticity and displacement fields are expanded m Fourler series along the in-plane coordinates
which satisfy the simply supported edges boundary conditions. The state space technique is used to obtain
natural frequencies analytically. Accuracy and convergence of the present approach are examined by comparing
the analytical results with the existing values in literature. The parametric study 15 carried out to discuss the
effects of gradient index, geometrical properties such as span angle, facing layers thickness and axial length
to mid radius ratio on the frequency behavior of the sandwich panel. The obtained exact solution shows that
the FGM core has significant effects on the vibration behavior of sandwich cylindrical panel. This fist known
exact solution serves as a benchmark for assessing the validity of numerical methods or two-dimensional
theories used to analyses of sandwich cylindrical panels.
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INTRODUCTION

Sandwich panels are important structural elements for
many fields of lightweight construction. In conventional
sandwich structures, due to the difference between
stiffness of the face sheets and the core layer, debonding
failure may occur at the mterfaces. By using FGM core,
resistance of sandwich panels to this type of failure
increases. In recent years, static and free vibration
behavior of sandwich panel has been extensively studied
by some researchers. Gipson (1989) carried out frequency
analysis of vibrating sandwich panels with directionally
remnforced laminations. Based on the principle of virtual
work (Xia and Lukasiewicz, 1995) analyzed free vibration
of viscoelastic, damped sandwich cylindrical panel using
the Runge-Kutta method. Free vibration analysis of
doubly curved open deep sandwich shells was
presented by Smgh (1999) using the Rayleigh-Ritz
method. Nonlinear free vibration of shallow asymmetrical,
doubly curved sandwich shell with orthotropic core
having different elastic characteristics was presented by
Chakrabarti and Bera (2002). Khare et al. (2004) used the
higher-order shear deformation theory and finite element

method to study the free vibration behavior of 1sotropic,
orthotropic and layered amisotropic composite and
sandwich laminates. Kashtalyan and Menshykova (2009)
investigated elastic deformation of sandwich panels with
functionally graded core. Based on two dimensional
theory (Moreira and Rodrigues, 2010) carried out static
and dynamic analyses of sandwich panel using the finte
element method Rahmani et ol (2010) discussed free
vibration of composite sandwich cylindrical shell with
flexible core using the classical shell theory for the face
sheets and elasticity theory for the core layer. Based on
the refined three-layered theory (Biglari and Jafari, 2010)
investigated free vibration of doubly-curved sandwich
panels with flexible core. Rhman et al. (2010) discussed
free vibration of composite sandwich cylindrical shell with
flexible core using the higher order sandwich panel
theory. Effect of continuously grading fiber orientation
face sheets on vibration behavior of sandwich panels with
functionally graded core was studied by Aragh and Yas
(2011) using the Generalized Differential Quadrature
(GDQ) method. Mohammadi and Sedaghti (201 2) analyzed
free wvibration of sandwich cylindrical shell with
viscoelastic core using the semi-analytical finite element
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method. Based on the Higher Order Zigzag Theory
(HOZT), Kumar et al. (2013) analyzed free vibration
behavior of lammated composite and sandwich shells
using the 2D fimte element method. Sobhy (2013)
investigated vibration and buckling behavior of FGM
sandwich plate resting on elastic foundations with
various boundary conditions. Yas ef al. (2013) discussed
free wvibration behavior of fimctionally graded
nanocomposite  cylindrical —panels reinforced by
single-walled carbon nanotubes using the theory of
elasticity and generalized differential quadrature method.
Dozio (2013) used two-dimensional Ritz method to
mvestigate free vibration behavior of sandwich plate with
FGM core layer. By using quasi-3D higher order shear
deformation and a meshless techmque, static,
vibraton and buckling analysis of i1sotropic and
functionally graded sandwich plates was discussed by
Neves ef al. (2013). Based on three-dimensional theory of
elasticity, researcher analyzed free vibration behavior of
nanoplate, cylindrical shell and cylindrical panel
(Alibeigloo and Kani, 2010; Alibeigloo, 2011, 2012;
Alibeigloo et al., 2012). Recently, researcher (Alibeigloo,
2014) used theory of elasticity to carry out free vibration
analysis of functionally graded
reinforced composite cylindrical panel embedded in
piezoelectric layers. To our knowledge, three-dimensional
free vibration solution of simply supported sandwich
FGM cylindrical panel has not yet been mvestigated.
Therefore, this first known solution provides an important
benchmark for future assessing the validity of newly
developed numerical methods such as meshless methods
(Zhang et al., 2014a-c; Liew et al., 2014; Ferreira et al.,
2005; Ferreira et al., 2006) for sandwich cylindrical panels
with functionally graded core. In this study, we will
examine the vibration behavior of FGM ecylindrical
sandwich panel using the Fourier series and state space
techmque. A few selected example problems of sandwich
panels with aluminium/zirconia FGM core layer made of
different materials are studied.

free

carbon  nanotube

Theory and formulation: In this study, a smply
supported cylindrical sandwich panel composed of
metal and ceramic facing sheets and a host FGM core
layer is considered. The panel has length I, span angle h,,
total thickness h, inner and outer radius r, and 1,
respectively as depicted inFig. 1. The Young’s modulus
and material density of the FGM core layer are assumed to
vary according to the simple power-law along the radial

direction:
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Fig. 1. Geometry of FGM sandwich panel
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The E, p,. E. p, are the Young’s modulus and
material density at the inner and outer surfaces of the
FGM core layer, respectively. The equilibrium equation
for the FGM core in cylindrical coordinate can be
written in the form:
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where, T; (1=r. 0, 2) are the normal and shear stress
and u (i=r, 8, z) are displacement components along
the radial, circumferential and axial
respectively. Stress-displacement relations
elasticity are:
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The smnply supported boundary conditions are
expressed according to the following relations:

u=u,=0,=0 z=0, L (4a)
u=u=0c,=086=08 (4b)
For free vibration analysis, the conditions on the

inner and outer surface boundaries of the sandwich panel
are assumed to be traction free:

6, =C,=0,=0r=¢, T, (3
MATERIALS AND METHODS
Analytical solution: The relations for simply supported
boundary conditions, Eq. 4a and b are satisfied by the

following Fourier expansion of stress and
displacement field:

series
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The physical quantities are: U,c(i=r82),
9..,0,.,0, functions of r to be determined by satisfying
equilibrium Eq. 2. Substituting Eq. 6 into Eq. 2 and 4 leads
to the following equations:
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The non-dimensional variables and elastic
constants are mtroduced as follows:
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Substituting Eq. 9 into Eq. 7 and 8, we obtain the
following non-dimensional state space equation:

déi ~G,8, am
dr
Where:
d; = (80.0,06.5,) are the state space variables
G; = The square matrix of coefficients given in the
Appendix 1
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Since, the coefficient matrix G; is not constant, it is
difficult to solve Eq. 10 directly. It is possible to solve
such differential equations by using the exponential series
solutions as well as layer wise techmque. In this study,
we use the layer wise technique to divide the FGM layer
into N fictitious thin layers. Thus, the coefficient matrix G;
can be assumed constant within each layer (denoted as
Gf, at the mid radius of the kth layer). Now, the general
solution to Eq. 10 for lth layer of FGM is:

8 (1) =8,e™ T, €T <, (11)
T=Ty.,
L =r+h, + %; 8y (T)=Myd,
_ (12)

£
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by using continuity condition of the state variable at each

M, —exp[Gﬂ(

fictitious interface, correlations between state variables at
the mner and outer surfaces of the FGM core layer are
derived:

85 =MD (13)
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are the state vectors at the mner and outer surface of
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FGM layer, respectively. By substituting m,= 0 mto
Eq. 6 and 7 and using the same procedure as
that used for the FGM layer, the related state space
differential equations for the inner and outer facing layers,
made of metal and ceramic, respectively, can be derived
for the jth layer as follows:
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Applying the continuity condition of the state
variables at each fictitious interface for metal and ceramic
layers yields the following correlations between state
variables at the mmer and outer surface of metal and
ceramic facing sheets, respectively:

8mh = MmSDm (1 Sa)
8‘:h = MCSDC (1 Sb)
Where:
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The 8, are the state vectors at the inner and outer
surface of metal and ceramic layers, respectively. By using
Eq. 13, 15a and 15b and noting that the state variables at
the facing/core mnterfaces of the FGM sandwich panel are
continuous, the following correlation between the state
variables at the outer and the inner surfaces of the FGM
sandwich panel is derived, i.e:

(1) = AS(T) (16)

where, A = M. TMM,,. Imposing the surface traction free
boundary conditions Eq. 5 m Eq. 16 leads to the following
homogenous equations for displacement components at
the inner surface of the sandwich panel:

Al2  Al3 Al4 || U,
A52 A33 AS54 || U,
A6Z A63 A64 | U,

(17)

0
0
0

Finally, a nontrivial solution to Eq. 17 leads to the
characteristic equation for natural frequencies of the
problem.

RESULTS AND DISCUSSION

In this study, numerical simulations are carried
out for a siumply-supported sandwich panel with
aluminium/zirconia FGM core layer made of materials with
the following properties:
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E, =E, =70GPa; p, =p, = 2707kg/k’
E. =E, =151GPa; p,_, =p, =3000kg/k’

unless otherwise specified, values of other parameters are:
hi=20h;h=01,s=E_/h=10,0_=n/4.

The present formulation is first validated by comparing
the numerical results to those reported values in the
literature. As, there are no existing nmumerical results for
three dimensional vibration of sandwich cylindrical panel
with FGM core, the present formulation are simplified so
as to compute results for the FGM cylindrical panel that
can be compared with the available results by Bodaghi
and Shakeri (2012) as listed in Table 1. In Table 1, a
comparative study 1s carried out on the fundamental
frequency of simply supported FGM cylindrical panel for
various coefficients of power law, m,. It 13 seen that the
present results are m good agreement with reported
results m Bodaghi and Shaker: (2012). It is noted that the
discrepancy is due to the conventional two-dimensional
first-order shear deformation theory which was used in
(Zhang et al., 2012). For further discussion, numerical
investigations are carried out. The results are presented
in Table 2-3 and Fig. 1-3. Influence of the number of
circumferential and axial modes on the first dimensionless
frequency for various circumferential dimensions 0, is
listed in Table 2.

From Table 2, it 1s observed that dimensionless
frequency increases when the number of circumferential
modes and axial modes increases. It can be concluded that
variation of the circumferential dimension has more effect
on the axial mode of vibration than the circumferential
mode. Table 3 presents the effect of the mumber of
modes (m) on the first three
non-dimensional natural frequencies of thin and thick
sandwich cylindrical panels. As, it can be seen from
Table 3, the effect of m on the natural frequencies is more

circumnferential

pronounce m the higher frequencies than m the lower
frequencies. It can be further concluded that the influence
of the number of circumferential modes in thick panel 1s
more significant. The mfluence of FGM core layer

Table 1: Comparison of the dimentionless fundamental frequency for the
simply supported FG cvlindrical panel

thickness to the facing layer thickness ratioc on the
non-dimensional fundamental frequency is depicted in
Fig. 2. From Fig. 2, it can be seen that increase the
thickness of the FGM layer up to nearly hg/h,, = 20 causes
significant increase in the fundamental frequency. The
rate decreases until the thickness ratio reaches hg/h, = 120
The stiffness of the sandwich panel mcreases when the
FGM layer thickness increases and consequently, the
fundamental frequency of the panel increases. The effect
of L/R, on the dimensionless fundamental frequency of
thick and thin sandwich cylindrical FGM panels 1s
depicted in Fig. 3. The stiffness of panel decreases when
the length to mid-radius ratio mereases which results in
decrease in the fundamental frequency parameter. Tt can
also been seen that this effect is significant when the
length to mid-radius ratio is <2. When, the length to
mid-radius ratio is =2, the effect decreases when the
length to mid-radius ratio increases up to nearly I/R,, after
which the effect can be ignored. Moreover, it can be
concluded that the maximum length to mid-radius ratio

Table 2: Effect of circumnferential dimension, 8m on the non-dimensional
first natural frequency of the sandwich cylindrical panel for the
various circumferential and axial modes number

N
8, M 1 2 3 4 5
w2 1 0.829 1.792 3.102 4.765 6.6690
2 1.461 2374 3704 5.338 7.1940
3 2.762 3.545 4.759 6.291 8.0520
4 4.397 5.084 6.168 7.566 9.2020
5 6.251 6.858 7.824 9.089 10.593
2n3 1 0.716 1.742 3.003 4.660 6.5710
2 1.113 1.908 3.251 4.912 6.8060
3 1.461 2.374 3704 5.338 7.1940
4 2.283 3.104 4.362 5.934 7.7310
5 3.277 4.025 5.195 6.684 8.4050
26 1 0.608 1.734 2.969 4.624 6.5370
2 1.011 1.792 3.103 4.765 6.0690
3 1.121 1.996 3.344 5.002 6.8880
4 1.461 2374 3704 5.338 7.1940
5 2.059 2.901 4.18 5.770 7.5830
1 0.503 1.733 2.954 4.607 6.5210
2 0.862 1.755 3.037 4.697 6.6060
3 1.001 1.853 3.185 4.848 6.7460
4 1.108 2.058 3.407 5.062 6.9430
5 1.461 2374 3.704 5.338 7.1940

Table 3: Effect of circumferential mode number, m, on first three
non-dimensional natural frequency of the thin sandwich cylindrical
panel forn=1

m, S M oWy [ [

5 1 1.508 3.807 6.4200

Ry M. Methods 0 0.5 1 2 2 3.668 6.301 10.550

P e Togwo  eosmd  sroew  4sises : 6305 9057 1432
ESEr . X 3 .

1 Ref(30) 521831 43.8018 392122 34.7501 10 ; g'gg 2229 fg‘gig

Presen 52,1991 43.8680 302760  34.798 : : '

5 Presen 42.6550 35.0092 307008 27.5511 3 4.397 11.88 19.966

Ref(30)  42.6589 35.0343 30734 27.5802 30 1 0.519 3.78 64400

10 Presen 42,3000 34.6999 30,7008  27.3138 2 0.851 6.286 10.858

Ref(30)  42.3502 34,7201 307305 27.3402 3 1.75 9.053 15.623
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Fig. 2: Effect of FGM to metal thickness ratio on the non-dimensional fundamental frequency of sandwich cylindrical
FOM panel with S =10,h=10,L=Rm,m=n=1, Bm = /4

Fig. 3: Effect of L/R_, on dimensionless fundamental frequency of thick and thin sandwich cylindrical FGM panel
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Fig. 4: Effect of L/R, on dimensionless fundamental frequency of sandwich cylindrical FGM panel with various

circumferential dimensionandm =n=1

which does not affect the fundamental frequency in thick
panel 15 smaller than that i thin panel. Figure 4 depicts
the effect of L/R, on the dimensionless fundamental
frequency of sandwich cylindrical FGM panel with
various circumferential dimensions. As shown in the
figure, increase in the circumferential dimension m 0, the
stiffness of the panel decreases which results in decrease

925

in the dimensionless fundamental frequency. Besides, it
1s observed that the effect of length to mid-radius ratio on
the fundamental frequency parameter depends directly on
the circumferential dimension.

Simulation: After this procedure, simulation of this panel
in ABAQUS Software is possible and we can get more



J. Eng. Applied Sci., 11 (4): 920-929, 2016

£
i
e
g
o
+4,
i
i
it
i

Fig. 7: Third mode of vibration in ABAQUS Software

information and output after this way. We considered  Maple Software and we get the specific modulus of
FGM layer to 10 layer and property of each layer has elasticity for each layer. As you can see from Fig. 4-9,
changed through the thickness. Formulation sclved by  these are modes of vibration.
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Fig. 9: Fifth mode of vibration in ABAQUS Software
CONCLUSION

Based on the theory of elasticity, a first known exact
free wvibration solution of simply supported FGM
sandwich cylindrical panel was presented. A coupled
technique, using the Fourier series expansion along the
axial and circumferential directions and state space
technique in the radial direction, was used to obtain the
solution. A comparison study was carried out to validate
the accuracy of the present formulation. The exact
vibration solution obtained from the present method can
be used as a benchmark reference for assessing the
validity of newly developed numerical techmques for
approximate solution of sandwich cylindrical panels with
functionally graded core. In this study, the numerical
llustrations have revealed that: circumferential dimension
has significant effect on the axial mode of vibration than
the circumferential mode of vibration:

+  Effect of the number of circurnferential modes in the
thick panel 1s more significant

+  Difference between the first three natural frequencies
decreases when the circumferential mode number
increases

927
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FGM layer thicknmess to facing thickness ratio
affects the wvibration behavior of the sandwich
panel pronounce at the ratio;
however, after the ratio increases up to a specified

more lower
value, the influence of the facing layer can be
neglected

The frequency behavior is affected by the length to
mid-radius ratio strongly when L/R, <2

Maximum length to mid-radius ratio does not affect
the fundamental frequency m the thick panel than
that in the thin panel

The fundamental frequency at a specified 3 for the
metal/FGM/ceramic layup is always greater than that
for other layups

The effect of S on the first natural frequency of the
higher mode is more significant

The of S first natural
frequency of each mode in the thick panelis
more significant than that for the moderately thick
panel

influence on the

The numerical result and simulation result has good
correlation
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