Tournal of Engineering and Applied Sciences 12 (9): 2371-2376, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Proposed System Architecture for Integrity Verification of Embedded Systems

Abdo Ali A. Al-Wosabi and Zarina Shukur
Research Center for Software Technology and Management (Softam),
Faculty of Information Science and Technology (FTSM),
University Kebangsaan Malaysia (UKM), 43600 Bangi, Malaysia

Abstract: Since, the digital devices play essential roles in our daily life, system integrity is important. Thus,
there is a need to propose appropriate and effective techniques/tools to verify that the original/pure Embedded
Systems (ESs) have been used in those devices. We present our proposed system architecture for ESs integrity
verification which includes two main phases: fetching an ES code at a server site (i.e., data center) and

examining the ES at a remote site (using a designed user application). The mtegrity of that ES could be verified
by comparing the computed hash value, result could show whether that system has been altered or tampered
with. We mtegrate hash function (SHA-2) with a random key to calculate a umque digest value for a targeted
system. Also, we use timestamps and nonce values, two secure keys and public key algorithm to design a

security protocol.

Key words: Embedded systems, software tampering, system integrity, integrity verification, computed hash

value

INTRODUCTION

Security becomes as the top challenge and
mteresting research area and human lives are affected
directly by the digital revolution (Alcaraz et al., 2012,
Basile ef al., 201 2; Garcia and Jacobs, 2010). Precisely, our
digital world relies on using Embedded Systems (ESs) in
most of appliances and digital devices such as mobiles,
digital cameras, smart cars and etc. Those systems full-fill
a significant part in (almost) all aspects of our modern life.
ESs usually accomplishes critical functions: momtoring
and controlling real time objects and sensors and
processing vital data and mformation Defining the
security aspects of ESs are related to the main principles
of information security: confidentiality, mtegrity and
availability.

However, those systems face substantial challenges,
like limited processing power and memory resources
and security threats because they usually operate in a
physically unprotected environment (Nimgaonkar et al.,
2013a, b). Attackers often exploit potential vulnerabilities
in the system software in-order to gain unauthorized
access for utilizing the system or fetching the system’s
data illegally. For instance, there are a number of real
life cases have been reported lately m Malaysia and
India.

In fact, the main idea behind our proposed framework
1s to scan the ES code and then calculate a umque hash
value for that code. The digest value could be encrypted
and stored mnto a dedicated database in-order to provide
1t for later mtegrity verification process.

Literature review: Based on the conducted literature
reviews (Wosabi et al., 2015; Wosabi and Shukur, 2015;
Thrahim e al., 2015) our research is related to a number of
research studies. The combination of numerous hashes
for executable software which represents a signature of a
whole executable software was recommended. Solution
based on analyzing the real-time execution of code section
has also been proposed. Zimmer et al. (2010) utilize
Worst-Case Execution Time (WCET) bounds data to
recognize code tampering in real-time Cyber-Physical
Systems (CPS). On the other hand, Roger’s outline
applies a Parallel Message Authentication Code (PMAC)
algorithm that consider utilizing a single hardware
encryption module for both encryption and validation
(Rogers and Milenkovic, 2009). The hardware monitor
solution has also been applied by a number of
researchers. Mao and Wolf (2010) the researchers
presented a checking system to verify the proper software
execution. Additionally, combmation of hardware and
software solutions cen be exploited. For example,

Corresponding Author: Abdo Ali A. Al-Wosabi, Research Center for Software Technology and Management (Softam),
Faculty of Information Science and Technology (FTSM), University Kebangsaan Malaysia (UKM),

43600 Bangi, Malaysia

2371

J. Eng. Applied Sci., 12 (9): 2371-2376, 2017

Gelbart et al. (2009) proposed a
combined compiler and hardware approach to protect
With regards to trusted computing
(Garcia and Jacobs, 2010) outhned multiparty processing

units (local substations) to compute the sum of their

system that

the software.

energy consumption without revealing user’s information
while Kumari et @l (2011) proposed the use of control
mechanisms for data flow. A number of real world projects
on data and code security m ES have been mtroduced
and managed such as EVITA and INSTKA (2010) projects
on European countries (“http://www.evita-project.org/”,
“http:/Awww.insika.de/en/™).

MATERIALS AND METHODS

Design overview: The proposed system architecture for
ES integrity verification includes two main phases:
fetching an ES code at server site (1.e., data center) and
examining the ES at remote site, Fig. 1 shows the both
phases. Moreover, section 4 explains the proposed
protocol in-order to facilitate understanding the system
architecture in term of sequential processes.

Fetching system code: Fetching code, at server site,
stores an encoded form of the fetched code into a
dedicated database and facilitates verification processes
whenever requested. This phase Encompasses Scanning
ES code, encrypting it and storing the ciphered code mto
a database. Hence, a necessary application could be
designed to perform those fimctions. Note that, a
symimetric encryption algorithm with a secure key could
be applied to encrypt the extracted code before saving it
into the database. For example, AES has been suggested
according to its speed, key size and its immunity against
breakable.

A secure cryptographic hash algorithm (e.g., SHA-2)
would be implemented to calculate the HMAC. Tn fact, the
mtegrity mformation of an ES is extracted by computing
a hash value of the software code stored in the system’s
ROM. An identical secure key would be used as a seed
value to calculate the hash values of the remote system
and the previously saved code at the server site. Note
that, only hash function would be used and there 1s no
need for calculating a digital signature because a secure
protocol with challenge-response mechanism 1s used to
validate that the transferred data comes from a trusted
parties (1.e., server and user).

Requesting ES code-integrity verification: Requesting
the code-integrity verification, at remote site, would be

facilitated by downloading a dedicated application on the
user’s device. To request for system integrity verification,
the user must: register online at the server and provide his
user 1d and provide a digital certificate contams his public
key. Hence, user data could be stored into a dedicated
database and it would be available to be retrieved during
the integrity verification of a remote system. After the
user completes the registration process successfully, the
downloaded application could facilitate capturing the ES
Id such as scanning the quick response code of a targeted
systermn.

Once the server receives the user pre-request for
integrity check, it would generate a Nonce value (N) and
a Time Stamp (TS1). Those values would be encrypted
using an earlier saved user’s public key and then the
encrypted values would be sent to that user. When the
user application receives and decrypts those values with
its private key, it then verifies the received timestamp
value. Once the timestamp werified, the application
prepares a request message containing: two secure keys
(Key 1 and 2) a hash value of the targeted system code
(calculated by key 1) a current timestamp and the received
nonee value.

Certainty, those secure keys (i.e., Key 1 and 2) must
never send as plaintext, so public key encryption
algorithm would be used for key encryption. The
server public key would be used to ensure secure
communication between the user application and the
server. Encrypting the secure keys with the public key of
the server would ensure that those keys would be
decrypted only by specific entity who does own the
corresponding private key (i.e., the server).

Moreover, hash value of the ES code would be
calculated to ensure code-integrity of a targeted system.
This value would be generated based on the stored code
on the targeted system’s ROM. The nonce value and
the timestamps included in the request and response
validation to avoid replay of previous valid remote
code-integrity and to avoid that remote-verification
requests could be replayed to perform DoS attack
(Garcia and JTacobs, 2010; Basile et al., 2012; Alcaraz et ai.,
2012).

Verifying remote code integrity: When integrity
verification request 1s received from the user application,
the code-integrity of the targeted ES needs to be verified.
Secure keys (Key 1 and 2) and nonce value would be
extracted with the server’s private key. Hence, the
received HMAC and the Time Stamp (TS2) values would
be decrypted using Key 2.

2372

J. Eng. Applied Sci., 12 (9): 2371-2376, 2017

P

Server
private key
T

Decrypt keys

Key 1 and 2

/—‘ User application
public key

Key 1 and 2
T

[@
(5) Encrypt keys s
| ENc,emue 1
1 (Key 1 and 2) ‘ ;

Server

Encrypt
scanned code

((AMAC,, ES) Je{ Scan code |

DECRYPT
stored code

Calculate TS1
[Generate R] [Generlate N]

z

foy

g 2 Encrypt(TS1, N) A4
= Verification Validity
& status status

I Enc,..,(HMAC) | l I
Encrypt (HMAC)
| |

erify TS
and calculate

| Enc,,, (TS2)
Encrypt (TS2)

TS2

A

| ENC,, ey (NONCE)

J

Encrypt (N)

> | »|Decrypt (TSI, N)l

A

User private
key

Fig. 1: The proposed system architecture for BES integrity verification

At first, the server vahdates the received request
according to the extracted values of timestamp and nonce
(1e, TS2 and N i Fig. 1). The request 1s valid only if: the
extracted timestamp is within acceptable time range and
the decrypted nonce value 1s equal to the nonce value
that previously generated at the server. If this validation
fails, server informs the user and ends the verification
processes. Otherwise, server retrieves the encrypted code
of the targeted ES from the database, decrypts it with the
server’s secure key, generates HMAC value from the
stored code with the extracted Key 1 and decrypts the
received HMAC value with the extracted Key 2. It then
compares these two hash values m-order to vernfy the
code-integrity of the remote ES. Finally, it notifies the user
with the result (either verified code or tampered code) and
logs the verification status into the database to be used
for further requests (Fig. 1).

Remote code integrity verification protocol: This
section outlines the proposed protocol for conducting
a code-integrity verification of remote ES. Tt ensures
that messages are authentic, recent and confidential.
Additionally, this protocol demonstrates how basic
could secure the

cryptographic primitives

exchanged/transported data and provide validity.

Verification request: The verification applicatio on the
user’s device initiates the protocol generating a request.
User request includes User Identification (User-ID) and
the targeted ES identifier (ES-TD). The request would be
received by the server and then the server fetches the
related data of that user and ES from the database in-order
to validate the request (Steps 1-7). Once the request is
valid, the server calculates the timestamp and generates
the nonce value. Then, it encrypts those two values and
sends the ciphered values along with the request
confirmation to the targeted user (Steps 8 and 9).

RESULTS AND DISCUSSION

Data delivery for integrity verification: When the user
application receives the request confirmation, it uses its
private key to extract the received timestamp and nonce
values and it then validates the decrypted timestamp. If it
is within acceptable range, it scans the ES code (Fig. 2:
Step 10 and 11). Then, the application generates the two
secure keys (Key 1 and 2). Key 1 would be used to
calculate HMAC of the ES code and Key 2 would be used
to encrypt the generated hash value. Also, it calculates
the current Time Stamp (TS2) and encrypts it with Key 2.
Besides, it then uses the server public key to encrypt the

2373

J. Eng. Applied Sci., 12 (9): 2371-2376, 2017

User application

Server system

ES User’s device Interface

Server Database

—

igetDyata(ES_1D);

> 2: En,....o o (User_ID, ES_ID)
3: cipherefiUse} ID&ES 1D

>
»

4: requestverify(User_ID, ES: ID)

6: user PubKey, regExpiryDate, Iast\'/*rifyDate

9: req[Conf] cipheredTimeStamp 1 &Nonce

w

igetData(User_ID, ES_ID;

NEZ isValid(User_ID, regExpiryDate, ES_ID,
lastVerifyDate)

8: calculateTS(), geherateNonce(),
> Encnser?nbl(ey(TS , Nonce)

sValidTS(receivedTS1)
11: gcanCode()

>

Enc

14: ciphpredKeys&receivedNonce,

> 10: D¢c,.)k (cipheredTS 1, cipheredNonce),

> 12: generaleKeys(), genetateHMAC, ,(ES_Code

13: cqlculqteTS(), Enckey2(TS2, ES_ HMAC),
napus(key 1 and 2, receivedNonce)

cipheredES_HMAC& Time$tamp2

17: ciphered ValidityStatus

v

15: Dec,,,,.pnq(CipheredKeys, receivedNonce),

> Dec,,,(cipheredTS2)

16: isValid(receivediI'S2&Nonce),
Encusal’ub](q(v alStat)

A

22:[ciphpred VerificationStatus

18: retrieveCipheredCode(E§_ID)

19: cipheredCode

<

20: Dec,,,, ks CiplieredCode),
> generatetHMAC, ,(storedCode)

compare(receivedES_HMAC, generated

>21: Dec,,(receivedGipheredES_HMAC),
HMAC), Enc

(verStat)

serPubKey

> 23: Dgc,.ohxo(ciphered VerificationStatus)

24: updage(ES_ID, currVerifyStatus, verifyDate)

Fig. 2: Remote code integrity verification protocol

secure keys (1.e, Key 1 and 2) and the received nonce
value. Hence, all the encrypted values are forwarded to
the server via its interface (Fig. 2: Steps 12-14).

Verifying code integrity: Whenever the
receives the ciphered values, it decrypts the secure keys
(1e., Key 1 and 2) and the ciphered nonce by using its
private key, decrypts the timestamp by using the
decrypted Key 2 and then validates the received
request based-on the extracted timestamp and nonce

Server

values. If this request 13 not valid, a notification
message would be replhed (Fig. 2: Steps 15-17).

Otherwise, the server retrieves an encrypted code of
that ES from the database and decrypts it with the private
key. Tt then uses the decrypted Key 1 to generate the
hash value of the retrieved code. Also, it uses the
decrypted Key 2 to decrypt the received hash value of the
ES code and compares it with the generated hash value,
result could show whether the ES has been altered or
tampered with (Fig. 2: Steps 18-24).

2374

J. Eng. Applied Sci., 12 (9): 2371-2376, 2017

CONCLUSION

Embedded devices are extensively used most of the
time 1n our digital era. However, most of those devices
have to function under unconfident settings where
attackers could gain physical access. To provide system
mtegrity detection, hash function (such as SHA-2) and
basic cryptographic primitives (such as symmetric and
asymmetric encryptions) could be used.

In this study, the focus is specifically on verifying
ES integrity. The study contains two main contributions.
First, it introduces a system architecture for code mntegrity
verification of ES by verifying the digest values of a
targeted system. Then, it presents a security protocol for
mntegrity verification using timestamps and nonce values,
two secure keys and public key algorithm.

Currently, research is in progress to evaluate the
proposed verification protocol. While formal methods
are very precise and accurate for presenting system
specifications, they are not widely used (Shukur et al,
2006, Sullabi and Shukur, 2008). Thus, a number of
researchers use the Compiler for the Analysis of Security
Protocols (Casper) to translate protocols descriptions
mto the corresponding process algebra Commurnicating
Sequential Processes (CSP) model. Also, they use the
Failure Divergences Refinement (FDR) in-order to
describe and analyze those protocols (Shakh and
Devane, 2010; Ryan and Schneider, 2001 ; Lowe, 1997). So,
our future plans include verifying the proposed protocol
using those tools. Indeed, this would give a reliable
verification measurement m-order to figure-out potential
flaws and correct them.

ACKNOWLEDGEMENT

This research is partially supported by grant no.
PRGS/1/20151CTO1I/UKM/01A1.

REFERENCES

Alcaraz, C., I. Lopez, R. Roman and H.H. Chen, 2012.
Selecting key management schemes for WSN
applications. Comput. Secur., 31: 956-956.

Basile, C., D.S. Carlo and A. Scionti, 2012. FPGA-based
remote-code integrity verification of programs in
distributed embedded systems. TEEE. Trans. Syst.
Man Cybem. C. Appl. Rev., 42: 187-200.

Garcia, F.D. and B. Jacobs, 2010. Privacy-Friendly
Energy-Metering Via Homomorphic Encryption. Tn:
Security and Trust Management, Cuellar, T., L. JTavier,
B. Gilles and P. Alexander (Eds.). Springer, Berlin,
Germany, [SBN:978-3-642-22443-0, pp: 226-238.

Gelbart, O., E. Leontie, B. Narahari and R. Simha, 2009. A
compiler-hardware approach to software protection
for embedded systems. Comput, Electr. Eng., 35:
315-328.

Ibrahim, M.A., Z. Shukur, N. Zainal and A A A. Wosabi,
2015. Software manipulative techmiques of protection
and detection. ARPN. J. Eng. Appl Sci, 10
17953-17961.

Kumari, P., F. Kelbert and A. Pretschner, 2011. Data
protection in heterogeneous distributed systems:
A smart meter example. Karlsruhe Institute of
Technology, Karlsruhe, Germany.

Lowe, G, 1997. Casper: A compiler for the analysis of

Proceedings of 10th IEEE
Computer Security Foundations Workshop, June
10-12, IEEE, Los Alamitos, CA., United States, pp:
18-30.

Mao, S. and T. Wolf, 2010. Hardware support for secure
processing in embedded systems. IEEE Trans.
Comput., 59: 847-854.

Nimgaonlar, S., M. Gomathisankaran and S.P. Mohanty,
2013a. MEM-DnP a novel energy efficient approach
for memory integrity detection and protection in
embedded systems. Circuits Syst. Signal Process.,
32: 2581-2604.

Nimgaonkar, 3., M. Gomathisankaran and S.P. Mohanty,
2013b. TSV: A novel energy efficient memory
integrity verification scheme for embedded systems.
I. Syst. Archit., 59: 400-411.

Rogers, A. and A. Milenkovic, 2009. Security extensions
for mtegrity end confidentiality in embedded
processors. Microprocess. Microsyst., 33: 398-414.

Ryan, P. and S.A. Schneider, 2001. The Modelling and
Analysis of Security Protocols: The Csp Approach.
Addison-Wesley, Boston, TISA., ISBN:0-201-674718,
Pages: 299.

Shaikh, R. and S. Devane, 2010. Formal verification of
payment protocol using AVISPA. Int. J. Inf, 3:
326-337.

Shulur, Z., N. Alias, M.HM. Halip and B. Idrus, 2006.
Formal specification and validation of selective

security protocols.

acknowledgement protocol using Z/EVES theorem
prover. J. Applied Sci., 6: 1712-1719.

Sullabi, M.A. and 7. Shukur, 2008. SNL27: Tool for
translating structured
specification into formal specification. Am. J. Applied
Sci., 5: 378-384.

Wosabl, AAAA and 7. Shukur, 2015, Software
tampering detection in embedded systems a
systematic literature review. J. Theor. Appl. Inf
Technol., 76: 211-216.

an informal software

2375

J. Eng. Applied Sci., 12 (9): 2371-2376, 2017

Wosabi, AAAA., Z. Shukur and M.A. Thrahim, 2015.

Frameworle for software tampering detection in
embedded systems. Proceeding of the 2015
International Conference on Electrical Engmeering
and Informatics, August 10-11, 2015, TEEE, Sepang
District, Malaysia, TSBN:978-1-4673-7319-7, pp:
250-264.

2376

Zimmer, C., B. Bhat, F. Mueller and S. Mohan,

2010. Time-based intrusion detection in
cyber-physical systems. Proceedings of the 1st
ACM IEEE Intemational Conference on
Cyber-Physical Systems, April 13-15, 2010, ACM,
New York, USA., ISBN:978-1-4503-0066-7, pp:
109-118.

	2371-2376 - Copy_Page_1
	2371-2376 - Copy_Page_2
	2371-2376 - Copy_Page_3
	2371-2376 - Copy_Page_4
	2371-2376 - Copy_Page_5
	2371-2376 - Copy_Page_6

