Tournal of Engineering and Applied Sciences 12 (12): 3098-3101, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Parallelizing Pincer Search Using CUDA-A Conceptual Idea

Anchit Bhatia, Divyanshu Sharma and S. Chethan
Department of Information and Communication Technology,
Manipal Institute of Technology, Manipal, India

Abstract: Recent times have seen meteoric increase in the data that are available using which we can develop
automated data-driven techmques of extracting useful knowledge. Data mimng 1s the important step in this
process of knowledge discovery. One of the key problem in most of the data mining applications 13 discovering
the frequent item sets. Scanning of the huge data available to discover frequent item sets are computationally
expensive. A conventional multi-core processor might not very effective multi-threading capabilities to be able
to process large amounts of data leading to sequential implementation of a considerably large number of
processes. Such sequential implementation leads to lugh computation times due to pipeline latency and other
issues. Due to this limitation there is an increasing interest in the researchers to develop parallel data mining
algorithms for faster implementation and efficient use of available GPU architectures. Pincer search is one the
data miming algorithms which is used to discover the maximum frequent sets. Pincer search algorithm reduces
both the number of times the database is scanned and also the number of candidate considered. In this study,
we discuss a way to parallelize the pincer search algorithm to further speed up the process of discovering

maximum frequent sets.

Key words: CUDA, data mining, pincer search, frequent sets, candidate

INTRODUCTION

Data mimng 1s the process of discovery of valuable
and non-obvious mformation from a usually big collection
of data. Recent times have seen meteoric increase in the
data that are available using which we can develop
automated data-driven techmques of extracting useful
knowledge. Data miming is the important step m this
process of knowledge discovery. Given mformation and
databases of sufficient size and quality, we can employ
data mining techmiques by providing capabilities of
automated prediction of trends and behaviors and also
automated discovery of previously unknown data to
generate new business opportunities. As mentioned
above, data mining algorithms help us in extracting some
meaning out of pervasive data but comes with certain
shortcomings.

Data mining techniques are flexible as in they can be
unplemented even if the existing platforms are upgraded.
If we employ data mining tools by exploiting parallel
processing systems then they can analyze extremely huge
database within minutes. One of the key problem in most
of the data mining applications 1s discovering the frequent
item sets. One important reason for this 1s that it fits the
“Market Based Model” and has wide application in real
world scenarios. Such computation heavy tasks can be

parallelized to save time and harness the powers of high
performance GPGPUs. Scanning of the huge data available
to discover frequent item sets are computationally
expensive. A conventional multi-core processor might not
very effective multi-threading capabilities to be able to
process large amounts of data leading to sequential
implementation of a considerably large number of
processes. Such sequential implementation leads to high
computation times due to pipeline latency and other
1ssues. Due to this limitation there 1s an mereasing interest
in the researchers to develop parallel data miming
algorithms for faster implementation and efficient use of
available GPU architectures. Now that such many-core
architectures are available we must harness the parallel
computing paradigm.

Literature review: There have been previous endeavors
to parallelize data mining algorithms. These aim at
achieving the goal of utilizing the immense power of the
available many core architectures provided by compames
like NVIDIA and AMD. Here by we have enumerated
other research papers which have wsed CUDA and
NVIDIA for sigmficant speedup m various algorithms.
Adwa 5. Al-Hamoudi and A. Ahmad Biyvabamu have
succeeded implementing parallel code for KNN and
decision tree with significant improvements in execution

Corresponding Author: Anchit Bhatia, Department of Information and Commumnication Technology,
Manipal Institute of Technology, Manipal, India
3098

J.Bhg Amplted 8o, 12 §12) 20083101, 201 7

time. Roger Luis Uy and Nelson Iarcos have worked on
a very similar problem like cur, dealing with frequentitem
sets (Al-Ham oudi and Bivabard, 2014). Thew succeededin
courting 1-item sets using SIMD arclitecture in CUDA.
Similarly another verv popular data mining algorithm has
been optimized to nmn on GPUs by Al-Hamoudi and
Biyabard (201 4). They have succeeded in writing kernel
code for partitiorning arcund medoids criginally proposed
by Uy and biareos (2014).

They have proved that with exponential inerease in
spatial data itis suitable to use GPU for PAR. Ina similar
dom ain Wang and Yuan (2014) proposed a methodology
to build FP tree in a fully parallel implementation
Salahetal. (2015) have made use of parallel techniquesto
achiese fast mirdng of m axim all v wform ative k-item setsin
big data and they have got a sigrificant scale-up obtained
with high item sets lenpgth and owver wvery large
databases.

Such presiously published works show the immense
potential of GPU based compiting and howr it has been
provedthat sequential algorittms canbe optimized to mn
much faster on such arclutectures.

CUDA architecture: CUDA-an acronym for Compute
Unified Drevice Arclotecture 15 an W IDIA technol ogy for
generd purpose GPU computing This technology can
harness the potential of the millions of CUDA-enabled
devices even for norsgraphies code.

In contrast to mulb-core CPUs the mamg-core
3PGPUs have the potential of performing thousands of
operations in a parallel or simultanecusly marmer. The
CUD A architectire comprises of compute engines for
parallel processing combined with OS-kernel 1evel support
for mtializng and confipuring the hardarare. &1so there is
a user-mode driver which has the provision of device level
API for developers. Waricus libraries like BLAS and FFT
are also optimized for CUD A

&lso wide wvariety of tools are awailable such as
NVIDLA C Compiler (rorec), CUDA Debugger (eudagdhby,
CUD A wisua profiler (eudaprof). The ease of use with
langnages like Python is an added advantage. & GPU is
visualized as a co-processor to the CPU having its own
device memory. It nins mary fhreads in parallel. The
CUDA API for python helps us in writing both host and
kernel code.

Each GPU constitites of grids, blocks and threads.
Each grid has multiple blocks and each bl ock further has
many tlreads. aAll threads in a grid execute the same
kernel functions. The division of grid constitutes of 2D
arrays of blocks. Each block is firther organized as 3D
array of threads. The dimensions are decided before the
kernel is mn Figiwe 1 shows thishierarcly. Choice of

Host D avice
Grid1
Kemel |, Block Block
1 (0, 0y (1,0}
2 i
Block~ Biock \
(91 & e
v o 11,|
&
{/6[!12 f'r I'l 1|.
/
Kemel — e f.-” ! |
2 " \

-BLDCJ\.I1.“:'
Ap A0 200 e

[Thraad Thraad | Thead
an] (e mae @0

[Thread| Thread| Theead | Thesad
oo m| 21| et

Fig. 1: Hierarclyy of block dimensions and grid dim ensions

block dimensions and grid dimensions is crucial to the
kernel code and must be chosen wisely by the
programmer. Threads belenging to same block alse have
properties that allow them to coorperate. The memory
accesses by these threads is also to be managed and
CUDA provides support for that too giving constructs
like shared, constant and device memeryto further reduce
latencyin data transfer.

Figure 2 shows howr the concept of tlread ID and
block-ID works. Each thread has its unique 1d m each
block. We can have multiple urique ID°s in each kernel
code using different threads from different blocks. Parallel
implementation implies that that very kernel code is
execited by a grid and all threads from all the blocks
run at the same time Hence, the owverhead of
sequertial iteration is avoided, allowing a much faster
implem ertation

Other than the thread b erarchy the GPU constitutes
of streaming multiprocessors each of which constitutes of
more processors known as streaming multiprocessors.
Due to such an architechire the mumber of arithmetic
operations a 3PU can handle is much higher than a CPU.
The impeortant thing to be noted is the presence of each
thread being mapped to differert core, each core being
able to run multiples threads at the same time. Hence, the
lateniew due to one process in a tlowead does not delay
other processes.

NVIDIA’s paralle]l programming model is called
SIT-“Single Instructi on, Multiple Threads™. Two other
different but related parallel programming models
are SIMD-“Single Instruction Multiple Data” and
SMT-“Simultanecus khutithreading” Each model 1s
based on a different sowrce of parallelism.

2099

J. Eng. Applied Sci., 12 (12): 3098-3101, 2017

Thread block 0

ID|1|23 415 --M—1|
threadIdx.x

int threadID = blockIdx.x *
blockDim.x + threadIdx.x;

float x = input[threadID];

float ¥ = func(x);
output [threadID] = y;

Fig. 2: The concept of thread-ID and block ID

Pincer search algorithm: Discovering frequent item sets
ig a key problem in important data mining applications
which includes aszociation rule mining (Lin and Kedem,
2002). Pincer search algorithm as shown in in Fig. 1 uses
both top-down and bottom-up approaches to agsociation
rule mining. The main search is still the bottom-up where
as a limited search is conducted using top-down approach
which is used to update the Maximum Frequent Candidate
Set (MFCS) a new data structure in pincer search
algorithm. MFCS is actually a set which contains all the
max frequent sets and is used to prune early candidates
that would be normally encountered in the bottom-up
gearch. The main advantage of the algorithm is that it
does not require lucid review of every frequent itemset
and it can deal with max frequent itemsets of large length.
As discussed above, pincer search method combines
bottom-up and top-down approaches. In bottom-up
approach, first the subsets are generated and then the
parent candidate set is generated using frequent subsets
where ag in top-down from the parent set subsets are
generated. Suppose, say that a process in between an
execution and some item gets have been already classified
as either frequent or infrequent and few itemsets are yet
to be classified. The approach is based on the perceptions
that if an itemset is infrequent then all ity supersets must
be infrequent as well and if an itemset is frequent then all
its subgets must be frequent (Lin and Kedem, 2002). The
above two perceptions will speed up the process of
searching max frequent set considerably.

Pincer search algorithm starts by generating
l-itemsets using top-down approach which prunes
candidates in every pass which is done with the help of
maximum frequent candidate set. MFS denotes Maximal
Frequent sets which contains all the max frequent sets
found during the execution which makes MFCS superset
of MFS. Algonithm terminates when MFCS is equal to
MFS. The pincer search algorithm is given (Lin and
Kedem, 2002).

Thread block 1

EHECEEEZ

int threadID = blockIdx.x *
blockDim.x + threadIdx.x;

float x = input [threadID];

float y = func(x);
output [threadID] = ¥;

Thread block N - 1

BERDEEES

int threadID = blockIdx.x *
blockDim.x + threadIdx.x;

float x = input[threadID];

float ¥ = func(x);
output [threadID] = y;

Algorithm 1:
Pincer search method
1.L,=e; k=1, C;={{i} |icI ;; S, =@
2.MFCS={{12,...,n}}; MFS =@a;
3.Dountil C,=e and S, =@
a. Read the database and count support for Cy and MFCS.
MFS = MFSu {frequent itemsets in MFCS};
. 8, = {infrequents itemsets in G };
Call MFCS gen algorithm if Sk # a;
. Call MFCS_pruning procedure;
. (Generate condidates Cy.; from Cy;
9. If any frequent itemset in C,, is removed from MFS_pruning
procedure
10. Call recovery procedure to recover condidates to Cy,;.
11. Call MFCS prune procedure to prune condidates in Ci.1.
12k = k+1;
13. Return MFS
MFCS gen
1. For all itemsets s € S,
a. For all itemsets m € MFCS
b. If s is a subset of m
¢. MFCS = MFCS\{m}
d. For all items ¢ £ itemset a
I If mi{e }is not a subset of any itemset in MFCS
ii. MFCS = MFCSu{m'{e}}

2. Return MFCS
Recovery
1. For all itemsets 1€ L,
a. For all itemsets meMFS
T. Ifthe first k-1 items in 1 are also inm
1. For i from j+1 to |m]|
2. G = Cpy uf{litem), .., litems,
m.items;} }
MFS_prune
1. For all itemsets C in L,
2. If ¢ is a subset of any itemset in the current MFS
3. Delete ¢ from L,
MFCS_prune
1. For all itemsets in Ck,,
2.If ¢ is not a subset of any itemsset in the current MFC
3. Delete ¢ from Ck,,

MATERIALS AND METHODS

Pincer search uses the bottom up approach from
Aprioni algorithm and adds up its own method (top down
approach) to reduce computation when frequent item set
are very large. We propose to parallelize both of these
constituents of the algorithm ag follows:

3100

J. Eng. Applied Sci., 12 (12): 3098-3101, 2017

Finding the support MFCS: In the algorithm 1, line 3a,
deals with finding the support count for MFCS. This
function can be parallelized by assigmng each item in
MFCS to one thread. The support of each item in the set
of transactions is then calculated by each individual
thread. This way we can achieve massive improvement in
the computation speed by getting the support count of
the MFCS set in only one transaction. Then, the total
count can be added up. This is opposed to the normal
serial implementation where we have to iterate amongst
both MFCS and the transactions. This function 1s a part
of the top down approach of pincer search.

RESULTS AND DISCUSSION

Finding the support candidate: In the algorithm 1, line 3a,
deals with finding the support count for candidates. This
function will be implemented in a similar way as finding
the support MFCS to compute the support count of the
items 1n the candidate set. The same approach 1s followed
like the previous case and excessive iterations over the
large dataset can be avoided. This is a constituent of the
bottom-up approach

Finding the frequent and non-frequent candidates: In the
algorithm 1, line 5, deals with finding the 1 (frequent) and
s(non-frequent) sets. In tlus function, each item in
the candidate set 1s labelled either as frequent (1) or
non-frequent(s) based on it’s support count. To
implement it in a parallel manner, each item is labelled by
an ndividual thread to find the label of all items n one go.
Finding the frequent and non-frequent candidates 1s a
part of the bottom-up approach borrowed from the Apriori
algorithm.

Finding the frequent mfcs: In the algorithm 1, line 4, deals
with finding the frequent mfes. This function is used to
find out those items in mfcs that are frequent. To
unplement 1t parallely, each item is processed by an
mndividual thread to find the whether it 1s frequent or not
by matching it to the minimum support. Here again we
deal with the top-down approach and propose to
unplement it in a parallelized way via, CUDA kemnel
code.

The library that could be used for the parallel
implementation of the algorithm is numba cuda. In this
library the CUDA kernels and device functions are
compiled by decorating a python function with the jit or
autojit decorators. Pincer search follows both bottom-up
and top-down approaches. We can create CTUUDA kernel

codes to parallelize functions that assist both the
approaches. The various candidate counts and supports

are calculated in the kernel code written using numba
cuda.

CONCLUSION

In this research paper, we tried to discover all
possible parallelizable functions of an mmportant data
mining algorithm: pincer search. For a real world scenario
where the dataset are very large, improvement in
computation tumes hold very ligh significance. Our
proposal to parallelize the bottom up and some parts of
top down counting approach of pincer search will make
the algorithm even faster for scenarios where the datasets
are massive and the frequent item set are also large.
The assistance by parallel counting will show modest
improvement in execution time.

REFERENCES

Al-Hamoudi, A.S. and A A. Biyabani, 2014. Accelerating
data mining with CUDA and OpenMP. Proceedings
of the 11th International Conference on Computer
Systems and Applications (AICCSA) 2014,
November 10-13, 2014, TEEE, Rivadh, Saudi Arabia,
pp: 528-535.

Lin, DI and ZM. Kedem, 2002. Pincer-search: An
efficient algorithm for discovering the maximum
frequent set. TEEE. Trans. Knowl. Data Eng., 14:
553-566.

Salah, S.,R. Akbarima and F. Masseglia, 2015
Fast parallel mining of maximally informative
K-itemsets in big data. Proceedings of the 2015
[EEE International Conference on Data Mining
(ICDM), November 14-17, 2015, IEEE,
Montpellier, France, ISBN:978-1-4673-9504-5, pp:
359-368.

Uy, R.IL. and N. Marcos, 2016. Fast 1 -itemset frequency
count using CUDA. Proceedings of the 2016 TEEE
Conference on Region 10 (TENCON), November
22-25, 2016, IEEE, Manila, Philippines,
[SBN:978-1-5090-2598-5, pp: 210-213,

Wang, F. and B. Yuan, 2014. Parallel frequent
pattern mining without candidate generation on
GPUs. Proceedings of the 2014 IEEE
International Conference on Data Mining
Workshop (ICDMW), December 14, 2014, TEEE,
Shenzhen, China, ISBN:978-1-4799-4273-2, pp:
1046-1052.

3101

	3098-3101_Page_1
	3098-3101_Page_2
	3098-3101_Page_3
	3098-3101_Page_4

