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Abstract: This study focuses on analyzing the demand for raw material supply for a university dining mess
using time series method which falls under quantitative approach of demand forecasting and gives a detailed
step by step process of analysis. This method accurately forecasts the daily demand within a span of four
months, thereby eliminating the concern of mess authorities on their budgeting and supply of raw material for

university dining mess on a daily basis.
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INTRODUCTION

Demand forecasting has always been a critical
business parameter which helps in resource optimization
and improvement in productivity. It essentially consists
of determining the expected level of demand during a
certain time period under consideration (Meimanda et al.,
2012). Tt depends on prediction of consumer trends,
competitor and supplier actions, seasonal variations,
government and regulatory framework. It makes use of
both, data sources which provide statistical framework
and judgmental sources which are based on analogy and
domain knowledge of expert. In order to estimate future
demand it is important to plan the production level and
make arrangements for consuming resources.

Figure 1 throws light on the two approaches of
demand forecasting which are qualitative and
quantitative. Quantitative approach include the followimng
methods which are time series, moving average,
regression analysis, econometric model, etc. qualitative
methods can be categorized into-expert opmion method
and consumer survey method (Box and Jenkins, 1970).
Quantitative methods require the existence of past data
and thus help in forecasting future demand of mainly the
existing data and can forecast over a long period of time
whereas qualitative approaches don’t require any historic
data since they rely on pooled expert opinions and are
suited for a short term demand forecasting. In other words
qualitative methods require awareness of experts with the
current developments in their field and thus provide
reasonably good forecast. Qualitative approaches are
used where the past data are inappropriate for
processing.

This information helps us n understanding how the
above two categorization of demand forecasting are based
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Fig. 1: Classification of forecasting techniques

on the nature and the scope of the product whether it is
an existing one or to be released in the market. Therefore,
helping us m identifying where which method can be
applied and analysis can be done accurately. Through our
case study on umversity dining mess we focus on one of
the quantitative methods for demand forecasting-time
series.

MATERIALS AND METHODS

Review stage: Our database consists of university dining
mess records for a particular semester which spans a
period of four months (122 days). Tt contains the details of
all the active students and the total number of meals they
have consumed in a month.

Traditional qualitative approaches such as delphi
method, Judgment-aided model requires experts to agree
on a common forecast. Identifying of experts in the
suitable field is also one big challenge in this
approach.

We found that quantitative approach is more
appropriate for our case study as it consists of methods
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Fig. 2: The schema for the application of ARIMA
time-series modeling

such as tume series which 15 a banal tool in forecasting
demands. We can use time series method to analyze the
trends and also the seasonal and cyclic factors that can
influence the demand for a certain product. Tt consists of
working on discrete data which are time-based to produce
hidden acumen for revised decision making. Time-series
modeling is very useful when we have a correlated
temporal data (De Gooijer and Hyndman, 2006). The
commonly used model in time series modeling 1s known as
the ARMA Model n which AR means autoregression and
MA means moving average. This model is applicable
only on a stationary series. AR and MA Models differ on
the basis of the analogue between time series objects at
various different pomts. Instead of using regression
model, MA Model uses past prediction errors in a
regression model. Regression over a variable itself 1s
implied by autoregression. In autoregressive models,
using a linear consolidation of the previous values of the
variable, the variable of interest is forecasted (Fig. 2).

RESULTS AND DISCUSSION

Following we present the steps which are followed to
do a time series analysis on the university dining mess
dataset.

Step 1 (visual representation of time-series):
Broclewell and Davis (1996) prior to building a time series
model, 1t 13 of prime importance to analyze the trends.
Since, our dataset corresponds to a non-seasonal time
series, it consists of two components. One being the trend
component and other being an irregular component. To
estimate these two components the time series 1s
decomposed.

To analyse the trend component of a non-seasonal
time series which can be visualized using an additive
model equation, smoothing methods are used for
measuring sinple moving average of a time series (Fig. 3).
Smoothed time series data when plotted can help in
estimating the trend component. It removes or smoothens
the random fluctuations found in the dataset (Fig. 4).

Inferences:

o Over the span of 4 months (Aug’16-Nov'16-122
days), a decreasing trend mn observed

»  There 1s a sudden mcrease in the number of students
in the initial days as day by day, more students join
thedining mess as soon as they amrive at the
university

»  The deep dip found during late September 1s because
of the one week holidays given to freshers

¢ Many fluctuations are found in the graph which are
mainly because of the holidays occurring n that
period and thus students tend to eat outside the
campus instead of at the mess

This exploration of data through plotting graphs 1s
very important part in determiung the stationary or
non-stationary nature of the dataset.

Step 2 (stationarize the time series): After having a clear
understanding of the pattern, trend and cycle, now we can
check if the time series is stationary or not. There are three
common techniques which can be used to transform a
non-stationary time series to a stationary time series.

Detrending: Removing the trend component from the
series.

Differencing: Differences of the terms are modeled
instead of the actual term. Differencing contributes to the
Integration part in AR(DMA Model. The parameters
assoclated with this can be found using Auto Correlation
Function (ACF) and Partial ACF plots.

Seasonality: Tncorporated into the ARIMA Model
directly (Fig. 5). Now to address the i1ssue of trend
component of our dataset being stationary or not, we
perform differencing which might help in stabilizing the
mean of a time series by removing changes in the level of
a time series which in tum eliminates the trend and
seasonality (Dickey and Fuller, 1979).

We perform the Augmented Dickey-Fuller (ADF)
test for the null hypothesis of a unit root of the
urivariate (non-stationary) tume series using the function
adf test. The augmented Dickey-Fuller test includes three
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Fig. 5: Differencing performed on the time series

kinds of regression models. The statistic used here in the
test is a negative mumber. The rejection of the null
hypothesis of a unit root becomes more stronger as the
statistic becomes more negative.

Algorithm 1 (ADF test summary):
Auvgumented Dickey-Fuller Test

data: diff (fc_ts)
Dickey-Fuller =8.2788, Lag order = 0,p-value =0.01
Alternative hypothesis: stationary

We observe that the series is stationary
and is ready for any kind of time series
modeling.
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Fig 6: ACF and Partial ACF Plot on difference of log

Step 3 (plot ACF/PACF charts): The ACF (Auto
Correlation Function) plot provides an insight about the
covariance of the variables in the time series and their
underlying structure. The PACE (Partial Auto Correlation
Function) charts are plotted to find a measure of
correlation between two varnables in a fime series
excluding the effect of the wartables lying in between
thermn. The ACFEF and PACF charts are plotted and then the
data in these plots are analyzed (Brockwell and Dawis,
1996) (Fig. ).

We propose to regress on the difference of log
rather than log directly as differencing removes the
fion -stationary component in the time senes. We
first address the seasonal component and then the
non-seasonal component of an ARINWA Model.

It 15 observed that the ACF plot cuts off at the first
lag only and the first lag has a value closest to 1.0, We
can say that it 1s an AR(1) Model The PACEF plot cuts 12
observed to find the absolute value 15 greatest at the fifth
lag and then at lag 4% Thus, we can conclude that AR(1)
isto be considered which would malke the value of p as 1,
d as 1(as differencing has been done once) and o as 0.
The parameters required in the ARTMA Model are
identified by observing the above plots. {1, 1, ) iz the
best values for (p, d, o) for the ARINA Model.

Step 4 (implement the ARTMVMA Model): Chu (2009) with
the parameters (p, d, o) obtained from the ACF and PACF
plots, the ARTMA MWModel can be implemented and can
used as a model for predicting future values of our time
series data set. For that we call the animafunction in which
we pass the time senes and the parameter as order
argument.

Algorithm 2 (ARTMA Model summary):
Senes: foodts
ARIMS (1, 1,0
Coefficients:
arl

02825
s.e. 00277
Sizwma A2 estimated as 19524 lag likelihood =-768 94
AIC=154187 AlCc=153497 BIC=154744

ARINMACL, 1, MMModel on our time series depicts that
ARMA, M model is being fitted to the ime seties of first
diff erences. An ARTMA(L 1, 0) Model can be represented
as 3T = Z(T1-(B*Z (T-17) where (T} iz the wvalue to be
found at time t. While passing the ime senies data to the
arima function we estimate the walue of theta which is
02825

Step 5 (forecast and accuracy): Once the ARTWA Model
isready, it can be used to forecast the future values of the
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Fig. 7: Dotted line represents the predicted active students for the next 4 months

time series using forecast. Arima function in the
“forecast” R package. We can set the confidence level of
our prediction intervals by using the “level” argument.
The default confidence levels are 80 and 95%. Also we
mention the range upto which the model will calculate the
forecasted values. The fitted values of the forecast using
the ARTMA (1,1,0) Model are then plotted (Archer, 1987)
(Fig. 7.

Now, we move on to investigate for forecast errors in
the ARIMA Model. This is done by checking whether the
model is normally distributed with mean value equal to
zero and shows constant variance. For this we can plot
the forecast error values or residuals to check for constant
variance and histogram (with an overlaid normal curve) for
checking the distribution to be normal (Fig. 8).

The time plot shows that the variance of the error
values appear to be approximately persistent over time
and the histogram depicts that the errors are about
normally distributed with mean value closer to zero
(Hyndman and Koehler, 2006; Chambers and Hastie, 1992;
Syntetos and Boylan, 2005). Accuracy of the fitted values
of the forecast using the ARIMA (1,1,0) Model can
be estimated by the accuracy function. Training
set: ME = 0964595, RMSE = 1385794, MAE =478,
MPE=-0.04019555, MAPE =1.66166%; MASE =0.9668672;
ACF1 =-0.01347402.

The data above is the range of summary measures
returned by forecast accuracy functionin R. If a data
series t overlapping with the time of ob(any forecast
object like arima or Im object) is given, it calculates the
test setforecast accuracy based on t-ob. If't is not given,
it calculates the training set accuracy of the forecasts
according to the fitted values.

Algorithm 3 (common error parameters):
The folowing, are the measures calculated:
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Fig. 8: Time plot and histogramof forecast residuals/errors

ME: Mean Error

RMSE: Root Mean Squared Errpr
MAE: Mean Absolute Frror

MPE: Mean Percentage Error

MAPE: Mean Absolute Scaled Error
MASE: Mean Absolute Scaled Error
ACFI: Aotocorrelation of errors atlag 1

MPE computes the percentage error by which the
forecast result of a givenmodel differs from the actualdata.
MAPE 1is scale independent thus it is used to compare
forecast performance of data series that are on different
scale whereas RMSE and MAE are scale dependent
errors, thus cannot be used for series that are different
scale. Another metric that is mentioned above is MAPE

3106



J. Eng. Applied Sci., 12 (12): 3102-3107, 2017

which compares the forecasts using naive method. As it
never gives undefined or mfimte result it 1s very useful for
data series occurring at irregular intervals.

CONCLUSION

In this study, ARTMA forecasting model was used to
predict the number of active students for the next
semester of university. This model is based on time series
analysis. The number of active students predicted are
accurate enough to be used by the mess authorities to
estimate the amount of raw material for meals on a daily
basis. The forecasted values keeps the trend and the
non-seasonality of the data into account. Quantitative
approach was the first choice for this case as the database
has discrete time based data.

We can thus apply this method to other umversity
dining messes to illustrate the raw material supply
required on a daily, monthly and even per student vise
basis as per the demand of the dining mess. Predicting the
pattern helps the mess authorities to estimate days with
high and low number of students coming to mess and
thus can also estimate the manpower required tomanage
the crowd and be prepared accordingly. Such a model can
help the authorities to plan their mess budget accordingly
and also reduces food wastage which is of prime
importance in areas where scarcity of food is common.
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