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Round Flat Membrane at Great Deformations
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Abstarct: The problem of the extension in a circular membrane plane made of an isotropic elastic incompressible

material 15 solved within the framework of thin shell nonlinear theory. The solution 1s represented in
quadratures. An analytic solution 1s obtained for the Chernykh potential. It 1s shown that the solution can have
a peculiarity at finite transverse dimensions of a deformed membrane.
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INTRODUCTION

The products made from zlastomeric materials can
experience large strain without breaking up to several
hundred percent. According to the mentioned, it 1s
necessary to implement some plans in way of use of
nature of clean energies with approach of sustainable
development and create some powerful foundations for
this purpose through an overview of Tran’s traditional
architecture which has paid specific attention to climate
and the designations and constructions have been based
on climatic approaches (Ghasemi, 2017, Bochkareva and
Kolpak, 1993). The calculation of products from such
materials 1s camried out within the framework of
geometrically and physically non-linear elasticity theory
(Kabrits and Slevpenva, 1998; Malkov and Kabrits, 1999).
Mathematical models are the boundary value problems for
the systems of nonlinear partial differential equations. The
solution of such problems can be a non-unique one
(Bochkareva and Kolpak, 1993; Gent, 2005; Kanner and
Horgan, 2007, Kolpak et al., 2015, 2016, Kolpak and
Maltseva, 2015; Atafar et al., 2013; Wineman, 2003).
Along with this, the solutions are also possible that
have singularity at some points (Dal and Pronina, 1998;
Yuan et al., 2006). The analytical solutions of non-linear
equations can be modeled in exceptional cases. The
numerical solutions do not always allow us to reveal the
features in a stress-strain state (Kabrits et al., 1986). The
example of an analytical solution existence with the
peculiarity for a circular flat elastomeric membrane
stretched in a plane is shown below.

Law of elasticity: The nonlinear relationship between
and strains in the non-linear theory of
elasticity 1s determined by the means of an elastic

stresses

potential @ = @A, A, A;) which 1s an elongation ratio
function for an isotropic material A,, 4, and A, For an
incompressible material, the following incompressibility
condition must be satisfied: A, A, A, =1. The potentials
of Mum-Rivlin, Bartenev-Khazanovich, Gent-Thomas,
Ishihara, Biderman, Alexander, Hart-Smitt, Ogden are
among the potentials for incompressible materials
(Agostimam and DeSimone, 2012; Feng et al., 2006). Some
of them and their “modifications™ are often used to solve
specific problems (Lectez ef al., 2014, Liu and Fatt, 2011).
The problem of the potential selection remains to be open
one (Albrecht and Chandar, 2014; Liu and Fatt, 2011,
Nah et al., 2010) because each kind of elastomer has its
own unique properties. Below they will use the power
potential proposed by Kabrits et al. (1986):

oM (1+B)(Kf‘+h;+)¥3“f3)+ )

n’ (1-B)(A, "+, " +2," =3)
Where:

P = The linear shear modulus

n = The parameter

B = The constant satisfying the constraint -1<p<1

From this potential the potentials of Bartenev-
Khazanovich (n=1, p = 1), Neogukov (n=2, p =1) and
Mumi-Rivlin (n = 2) potential follow.

MATERIALS AND METHODS

Membrane equilibrium equations: Let the circular
membrane of the outer radius r, and with the radius of the
inner hole 1, is stretched in a plane by a uniform load
applied to its outer contour. Let is the radius of the middle
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swface points before deformation, rafter deformation;
h” the thickness of the membrane in an undeformed state
and h-the thickness of the membrane in a deformed state
A, and A, elongation multiplicity, T, and T, the forces in
the radial and circumferential directions. Then, for the
case of an axisymmetric deformation the equilibrium
equation is the following one (Kabrits et al., 1986;
Kolpak et al., 2015):

. %m T, =0 (2

and the equation, connecting elongation multiplicities A,
and A,

_dr

o (3)
Ay, =1/t h, =h/h" =TAA,

r“%mz—xl:o, iy

The relationship between the forces and the
multiplicities of elongations 1s determined by the elastic
potential @ = @(A,, 4, A,) (Kabrits et al., 1986):

T —h“(llaqj—kj aqn} T, —h“(lzaqj—kja@}
oA, oA, oA, oA,
4

The following boundary conditions are accepted on
the mnner contour of the membrane at " = r;; r = 1,
or A, = 1 and on the external contour at " = r; r*:
or A; = rv/,>1.

These boundary conditions assume that the points
of the mner contour are not displaced. The radius of the
outer contour 1s increased to the valuer r = r.. At that, the
load stretching the membrane iz calculated according to
the following equation: P = T, (' = ). According to the
case of the membrane with constant thickness (h” = const)
from Eq. 2:

oT, da, . of, T

_ Z_Tl (5)
M D, M, A,

Since, the forces T, and T, are the functions of
the elongation multiplicities only, then the dependence
A = A(A;) 1s obtained from this equation. And the
relationship between A, and 1° is cbtained from Eq. 3:

Ay
Inr—InC, = J _
’ }‘*10\42)79\*2

A3in)

where, C; is the integration constant. A homogeneous
solution satisfies Eq. 2 and 3 for a continuous membrane
A=A, =const, s = Ar, T, = T, = P where, P is the load
acting on an external contour.

RESULTS AND DISCUSSION

Analytical solution: For the case of potential Eq. 1, it
follows from Eq. 4 that:

T, = uh'A (A4, ) (1+ B+ (1B,
T, = uh"2; (A, -2, ) (1+ B+ (-0, )

and Hq. 5 takes the following form:

dh,  n {H 1+B+(1-B)Kl} )

da, A, PP,

The quadratures at p = 1 follow from this equation:

L:lj =const=C (M
;\'1)\"2
atp=-1:
27+ 3 = const =C (&)
at |B|<1:

A+B A0+ 1 -Bex)=(1-FIC @)

x=(1-BX1+ P Afx) =x"Vl+x
1+x -1

N+ x+1

Px)= %f(x)+ %]n

The integration constant C contained in Eq. 7 and &
must be a positive value. This constant and the constant
C are found from the satisfaction of the boundary
conditions. The function A, = A,(A,) as the solution of
Eq. 6 at various values of the parameter P is determined
from Eq. 7-9 explicitly.

Equation 8 and 9 allows the solution, at which A, can
take mfinite values at some point of the interval (r,, r;). At
that 4, will take finite values at this point. The finite
values will take the effort T, the effort T, is infinitely large
and the multiplicity of membrane thickness A; deformation
change tums to zero. That 15, at fimte transverse
dimensions of the stretched membrane a peculiarity may
appear at some point in a membrane.

In order to solve Eq. 8 on the inner contour, since at
this point A, = 1 the equality 1434, = C hall be performed.
Since, A, is a positive value, then the constant C
should satisfy the inequalities 1<C<4. The value C = 4
corresponds not a non-deformed membrane but to C = 1
the case when A, = <« on the inner contour. In order to
solve (9) at A, = 1 since 0<f<1 and x = (1-B)(1+p)'<1 the
functions f(x) and ®(x) take positive values in the
considered range of parameter P variation. The values of
the constant C will be positive and finite ones in this case
at any values on the inner contour, also at A, = .
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Fig. 1: The dependence of outer contour radius 4,
relative change on the multiplicity of elongation A,
within the mner contour

Figure 1 shows the dependence of the outer contour
radius A, increase on the elongation multiplicity A, on the
mtemnal contour for the case r, = 0.01 and r,=1 at the
values p=0andp =-1.

During the operation of specific products from
elastomers the physical properties of material can be
changed under the mfluence of external factors
including vibrational loads (Gasratova and Stareva, 2016;
Kabnts and Slepneva, 1998; Kolpak ef al., 2016) chemical
effects (Pronina, 2010, 2013; Rivlin, 2006) and temperature
gradients. In the considered membrane model this can be
related to the change of the parameter B in the elastic
potential (1. And if under the influence of external causes
in time P~1 then in this case the loss of equilibrium state
stability (Tahmassebpour, 2016; Zubov, 2007) may take
place with the subsequent destruction of the structure

(Fig. 1).
CONCLUSION

The obtained solution with a peculiarity within the
framework of thin shells theory should be considered
only as one of the possible directions for deformation
development. And the equations of thin shells theory in
such variants of physical nonlinearity can not be used to
describe the stress-stram state of thin membranes. In
these cases it 15 necessary to use the theories that take
mto account the heterogeneity of the stress state along
the thickness more accurately than the theory of thin
shells.
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