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Abstract: The increasing amounts of pressure and threat on pipeline infrastructure consequently represent an
elevation in the number of pipeline failures experienced. These failures are accompanied with extensive damage
leading to environmental, social and economic stress to mumcipalities and water utilities. Respective managers
are therefore pressured to put in place reliable maintenance and rehabilitation strategies in effort of minimizing
losses. Prediction of potential mishap 1s one way through which nstigation of planned rehabilitation may be
upheld. However, this is challenging, thanks to inherent uncertamties. One effective way of handling
uncertainty 1s through collection and combination of auxihary information and knowledge which can be tackled
using probabilistic models like Bayesian Networks (BNs). In this study, therefore we present comprehensive
review of how probabilistic models have been applied in different ways to predict pipeline leakage; we identify
various gaps presented by these models and finally we lughlight the current state of research as far as leakage
prediction 1s concerned. We also propose a recommendation for future research worl.
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INTRODUCTION

Water distribution networks stand out as one of the
most important and most expensive infrastructure assets
to water utilities and municipalities (Kabir e al., 2015).
They determine the utilitie’s operational cost, service
quality and highly uphold the foundation of public health
concerns (Kabir et al., 2015; Kleiner and Rajani, 2000).
These networks are anticipated to yield to failure given
that they are continually exposed to internal and external
degradation factors (Makar and Kleiner, 2000). As
discussed by Kabir ef al. (2015), Rajani and Kleiner (2001),
the nisk of failure is a blend of the probability and the
severity of a number of different processes (in most cases,
never comprehensively understood) that negatively affect
the ability of pipelines to achieve a number of operational
objectives set by utilities. Tn addition, the complexities
of these processes make modeling of detection and
prediction systems that are sensitive and accurate
enough for considerable leak notification quite daunting
(Rajani and Kleiner, 2001). Leakages are the most
prevalent form of failure that affects pipelines (Kleiner and
Rajarm, 2000). A Leak, according to Poulakis et af. (2003),
refer to an outflow or escape of water or any other fluid
from a local pomt or position in a pipe, serving as proof of
damage. They are unavoidable and can be noticed m more
than one location simultaneously.

Leakages have the potential of causing extensive
direct damage (in terms of destruction of road and
building foundations, flooding and other associated
liability costs like the cost of repairing damaged pipes and
cost of water loss quantified in terms of the cost of raw
water treatment) and mdirect damage to the economy and
the environment (Makar and Kleiner, 2000; Yarmyjala, 2007).
Generally, Pipeline failures reduce network reliability
(Tabesh et al., 2009) which in turn affects utilitie’s ability
to meet their objectives (Kabir et al., 2015). They also
increase utility expenditure; for instance, it is reported that
close to 80% of all the investment in a water facility is
spent on the distribution network with at least 60% of
these funds used on the piping system (Poulakis et af.,
2003; Stone et al., 2002). Tn addition, nearly half of the
funds allocated for the pipe system are used for
maintenance and rehabilitation. Beside these, global
reports (Stone et al., 2002) still indicate that water
distribution systems are mcreasingly at risk of failure.
These consequences have created a need to develop
proper proactive assessment methods and tools that are
built upon a combination of scientific approaches and
human expertise for risk of failure evaluation (Kabir et al.,
2015). The tools can assist mumcipality and utility
management to bring together both long and short term
management strategies that m the long run could be
useful to them with regards to cost cutting and improved
service delivery (Christodoulou et al., 2009; Kabir et al.,
2013).
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Predictive modeling is fundamental for decision
making as it facilitates future planmng of network
assessment based on current annotations (Kleiner and
Rajani, 2001; Mailhot et af., 2003). The general goal in
predictive modeling is to make use of readily available
data about the current network state to develop
techniques that would adequately use the same data to
make intervention plans on the network before failure 1s
experienced (Mailhot et al., 2003). A good number of
models quantifying pipelne risk of faillure and
deterioration factors given a significant amount of
historical data have been reported (Clair and Sinha, 2012;
Kabir et al., 2015, Kleiner and Rajani, 2001, Rajani and
Kleiner, 2001). Kleiner and Rajani (2001) clasified
probabilistic models into two categories the probabilistic
single-vanate that are described to derive probabilistic
measurements on grouped data and probabilistic
multi-variate models that are said to consider more
variables during analysis and acts on individual pipe
basis. Gat and FEisenbeis (2000) on the other hand,
presented a methodology for using maintenance records
to forecast pipe failure. The procedure utilized the Weibull
Proportional Hazard Model (WPHM) for analysis and
failure occurrence was forecasted using different data
inputs including length of pipe, pipe age, diameter, soil
type, method of pipe assembly, tratfic level and the kind
of supply made by the pipe. Two cities were used as a
case to compare the predicted failures of which n one of
the cities, critics (Clair and Sinha, 201 2) pointed out that
all the predicted failures turned out to have been over
estimated.

Mailhot et al. (2003) on the other hand presented a
method that described the Probability Density Functions
(PDF) defining the time difference between consecutive
breaks m a pipe. The model assumed that pipe ageing
takes place in two distinct processes: non-exponential,
characterized by uneven distribution of the duration
between failures; and exponential, characterized by a
uniform distribution of the time difference between
failures. However, critics Andreou et af. (1987) argued
that failure occur as a result of a combination of totally
different aspects which cannot umformly act on a pipe.
Therefore, exponential increase of failure over time may
not be possible. Kabir ef al. (2015) also pointed out that
there exists a widespread acknowledgement that the
relationships among pipe failure parameters are not
linear and therefore, require more sophisticated analytic
procedures and not simple mathematical models.

Christodoulou et al. (2009) applied Artificial Neural
Networks (ANN) combined with fuzzy logic (Neurofuzzy)
to analyze pipeline risk of failure and to develop a
Decision Support System (DSS) in wrban water zones. In
their study, the city of Limassol, Cyprus and New York

City were used as the case study. The study reported that
pipe breakage history, pipe age, material and pipe diameter
were the most significant factors that affected failure in
the studied regions. Al-Barqawi and Zayed (2006) also
proposed a model that utilized ANN to rate the condition
of underground pipeline networks. ANN was used to
develop the procedures for prioritization of network
rehabilitation. Among the results, they concluded that the
highest contributor to pipeline failure was the pipe break
rate, followed by pipe age. To further understand and
gather together some of the different models that tackle
predictive modeling of pipeline failure, reference 1s made
to a number of reviews that have been conducted to
investigate pipeline failure. Clair and Sinha (2012),
Kleiner and Rajani (2001) conducted different
comprehensive reviews of general models for prediction
of pipe condition, deterioration and failure rates while
Colombo ef al (2009) and Engelhardt et af. (2000)
conducted selective reviews about the same models. A
summary of some of the models highlighted m the
respective reviews is given in Table 1.

With regards to the articles cited in Table 1,
predictive models are categorized under statistical and
physical models (Clair and Smha, 2012; Klemer and
Rajani, 2001). Statistically, they make use of available
historical failure data to identify different failure patterns
(Kleiner and Rajani, 2001). Physical models however are
more geared towards analyzing the physical processes
that lead to pipe failure (Rajani and Kleiner, 2001).
Nonetheless, majority of these models assume that causal
parameters are in one way or ancther independent, even
though in reality, they are somehow connected to one
another. Therefore, a wholesome outlook that presents
the interconnection of all the different causal events is
necessary for identification of the relationships between
these events. One way of achieving this is through the
use of Network Based Models (NBMSs). Kabir et al. (2016)
gives a rather clear discussion of a group of Network
Based Modeling technicues.

These techniques mclude Cogmtive Maps or Fuzzy
Cognitive Maps (CM/FCM), Analytical Networl Process
(ANP), Credal Network (CNs), Bayesian Belief Networks
(BBNs), Fuzzy Rule-Based Models (FRBM) and Artificial
Neural Networks (ANN). Network models are
considered to be quite effective for predictive modeling
because of their ability to handle mherent data
uncertainties. A comparison of their ability in uncertainty
management while modeling 1s also performed in the
said discussion. Additionally, discussions performed by
the different researchers also bring out attention to a
number of different characteristics of probabilistic
models (discussed in the subsequent section) which
demonstrates their relevance in describing pipeline failure.
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Table 1: General failure prediction models modified after Clair and Sinha (2012)

Article reference Title Type of prediction Method used

Predictive models

Kleiner and Rajani (1999) Using limited data to assess future needs Break rate Gumbel, Weibull andherz distribution
Gat and Eisenbeis (2000) Using maintenance records to forecast Failure rate Weibull Proportional Hazard Model

Mailhot et af. (2003)
Christodoulou et af. (2003)

Rajani and Tesfamariam (2003)

Silva et al. (2006)

Testamariam et af. (2006)

Al-Rarqawi and Zayed (2006)
Davis et al. (2007)
Achim et af. (2007)

Rajani and Tesfamariam (2007)
Davis et af. (2008a, b)

Davis et al. (2008a, b)

Dehghan et al. (2008a)

Dehghan et al. (2008b)
Savic (2009

Wang et d., (2009)
Christodoulou et af. (2009)

Fares and Zayed (2010)

Xuetal (2011)

Kuetal (2013)

failures in water networks

Optimal replacerment of water pipes

A risk analysis framework for evaluating
structural degradation of water mains in
urban settings, using neurofuzzy systems
and statistical modeling techniques
Estimating time to faihire of ageing cast
iron water mains under uncertainties
Condition assessment and probabilistic
analysis to estimate failure rates in buried
metallic pipelines

Probabilistic approach for consideration of
uncertainties to estimate structural capacity
of ageing cast iron water mains

Condition rating model for underground
infrastructure sustainable water mains

A physical probabilistic model to predict
failure rates in buried PVC pipelines
Prediction of water pipe asset life using
neural networks

Estimating time to failure of cast iron water mains
Failure prediction and optimal scheduling of
replacements in asbestos cement water pipes
Fracture prediction in tough polyethylene pipes
using measured craze strength

Probabilistic failure prediction for deteriorating
pipelines: nonparametric approach

Statistical analysis of structural failures of water pipes
The use of data-driven methodologies for

prediction of water and wastewater asset failures
Prediction models for annual break rates of water mains
Risk-based asset management of water piping networks
using neurofilzzy systerns

Hierarchical fiizzy expert system for risk of failure

of water mains

Pipe break prediction based on evolutionary
data-driven methods with brief recorded data

Optimal pipe replacement strategy based on break
rate prediction through genetic programming for
water distribution network

Time to failure
Pipe failure

Failure rate

Failure rate

Failure rate

Failure rate and
condition rating
Failure rate

Pipe failure

Failure rate
Lifetime

Time to failure

Failure rate

Failure rate
Failure rate

Annual break rate
Risk of failure

Risk of failure

Break prediction

Break rate

(WPHM), Monte Carlo simulation
Regression anaty sis
ANN and Fuzzy logic (neurofuzzy)

Fuzzy sets theory

Weibull probability distribution

Fuzzy logic
ANN
LEFM theory, Weibull hazard

function and Monte Carle simulation
ANN

Fuzzy logic theory
Weibull and Herz distribution

Craze strength (CDNT) tests and
empirical method (deterministic
modeling)

Nonparametric

Statistical modeling

Evohitionary Poltynomial Regression
(EPR)

Regression analy sis

Neuro fuzzy

Hierarchical Fuzzy Logic

Genetic Programming (GP) and
Evohitionary Polynomial Regression
(EPR)

Genetic Programming (GP)

MATERIALS AND METHODS

Characteristics of predictive models: As mferred from the
different reviews conducted herein, predictive models are
depicted as: highly data oriented: they require a wide
range of data used for prediction purposes. In most cases,
availability of this data is limited (Clair and Sinha, 2012;
Kleiner and Rajani, 2001; Mailhot et «l, 2003,
Poulakis et al., 2003; Tabesh et al., 2009; Yamijala, 2007).
They are dynamic; they can be used even in cases where
the available database has got little information. This is
because they are able to incorporate expert knowledge
together with theoretic knowledge during the modeling
process (Heckerman, 1996; Kabir et al., 2015; Margaritis,
2003). The models are able to analyze how different

parameters affect pipe performance and not just focus on
previous failure lustory alone (Clawr and Simha, 2012).
They use presently available and historical failure data to
determine future behavier of assets and future failure
patterns (Klemer and Rajam, 2001; Mailhot et al., 2003;
Rajami and Klemer, 2001). These patterns are assumed to
extend into the future and therefore used for analyzing
future failure probabilities (Kleiner and Rajani, 2001,
Mailhot et al., 2003). Additionally, the models are able to
forecast failure in individual pipes and in a network or a
grouping of pipes (Clair and Sinha, 2012; Rajani and
Kleiner, 2001 ).

Nonetheless, the issue of uncertamty 1s still prevalent
and one major contributor of uncertainty 1s data
incompleteness (Mailhot et al., 2003; Makar and Kleiner,
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2000; Margaritis, 2003). Failure data recorded by utilities
in most cases are incomplete or contamn umreliable and
sometimes, false information. These characteristics
creates unpleasant modeling problems with the most
apparent one being difficulty in estimating failure rate of
pipes due to incompleteness or even unavailability of the
data itself (Gat and Eisenbeis, 2000, Margaritis, 2003;
Tabesh et al., 2009). As discussed by Gat and Eisenbeis
(2000) and Margaritis (2003), a lesser quantity of more
precise data can produce better results than a more
complete or a large quantity but uncertain data. Therefore,
when provided with limited but reliable or incomplete data,
a safer route is torely on expert or engineering knowledge
to enhance modeling. One suitable technique for such a
scenario is the use of Bayesian Networks (BNs).

Bayesian network modeling: Bayesian Networks (BNs)
are graphical models used to present knowledge about
uncertain domain or used for reasoning under uncertainty.
They are made up of nodes and arcs; where the nodes
represent system components and the arcs link the nodes
indicating probabilistic dependencies or relationship
between them. BN modeling therefore 1s a probabilistic
approach used to model and forecast the behavior of a
system based on observed proceedings (Ben-Gal et al.,
2007; Doguc and Ramirez-Marquez, 2009; Fenton et al.,
2002; Heckerman, 1996, Margaritis, 2003). In a typical
Bayesian networls, the interaction among the system
components leads to the ultimate system behavior in
terms of success or failure. The arcs basically run from a
parent to a child node, signifying that the probability of
success of a child depends on or is conditional to its
association with the parents, determined by their strength
of influence to the child (Doguc and Ramirez-Marquez,
2009). In case of absence of a link then the system
component are considered independent variables.
Uncertainty is therefore represented by associating
probabilities with the links between the components. As
demonstrated by Fenton et al. (2002), the probabilities
conform to three basic maxims:

¢ P (A), the probability of an event A lies between 0
and 1

* P (A)=0means that A 1s impossible while P (A) =1
means that A is definite

¢« P (A orB) =P (AHP (B), provided A and B are
disjomt

In addition, a BN is only complete when all the
conditional probabilities are computed and represented in
the ultimate model (Ben-Gal et al, 2007). A simple
illustration of BNs is shown in Fig. 1. The illustration
depicts how system components interact, leading to
system success or failure.

In Fig. 1, the topmost components, A,, A, and
A, are independent while the others are the dependent
components and probabilities can be computed using
the Baye’s theorem. Baye’s theorem also enhances
appropriate  assignment of conditional probabilities.
Basing on an illustration embraced by Kabir et al. (2015),
given a situation or a scenario comprising n number of
mutually exclusive parameters A, (1= 1, 2, ..., n) and when
given observed data Y then the probability can be
updated by Eq. 1:

p(Y[A; Jp(A) (1)
> p{s1a;)p(A,)
Where:

P(A]Y) = The posterior ocowrrence of the probability of A
given the condition that Y occurs
= The prior occurrence probability of A
= The marginal (total) occurrence probability of Y
which 1s considered constant given the data at
hand and finally
P(Y|A)= The conditional occurrence probability of Y
given that A occurs too and 15 viewed as the
likelihood distribution

P(A]Y) =

P(A)
P(Y)

BNs together with Bayesian analytical techniques
facilitate combination of expert, domain or engineering
knowledge and data. This knowledge refers to our prior
belief regarding the subject and can be incorporated
through the use of causal semantics within BNs that make
1t possible and more forward to program prior knowledge.
This 1s very critical mn situations where data 1s scarce
(Ben-Gal et al., 2007, Doguc and Ramirez-Marquez 2009;
Francis et al., 2014; Kabir et af., 2015 ). BNs also allow us

Fig. I: A simple Bayesian Network modified after
(Doguc and Ramirez-Marquez, 2009)
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to learn about causal relationships within the data which
not only provide understanding about the domain but
also allows us to make predictions. Most sigmificantly
with BNs we are able to handle mcomplete data sets
(Ben-Gal et al., 2007, Doguc and Ramirez-Marquez, 2009;
Francis et al., 2014, Margaritis, 2003). Tn addition, every
arrival of new information means that the prior probability
can be updated (Fenton ef af., 2002).

Evidence of modeling infrastructural systems
using Bns was seen from the late 80s and has since
been embraced by different researchers m literature
(Kabir ef af., 2015). Complexities of the models and the
modeling techniques have also evolved to try and keep
up with the present systems that gradually become
more composite (Dogue and Ramirez-Marquez, 2009).
Traditionally, experts had a difficult task of building
accurate models because the process was tedious and full
of errors (Kabir et al., 2015). To deal with such challenges,
BNs were proposed as an alternative as they provided
graphical belief environment for predicting risk of failure
in complex systems (Ben-Gal et al, 2007, Doguc and
Ramirez-Marquez, 2009, Francis et al., 201 4; Kabir et al.,
2015). In the subsequent sections of this study we
examine how BNs have been applied in different ways to
model pipeline failure; we also identify the various gaps
presented by these models and highlight the current state
of research as far as leakage prediction 1s concerned.

Recent models: Babovic et «l. (2002) applied two
advanced data mining technicques to determine the risk of
plpe bursts using a database of previous burst events
from the Darsh capital, Copenhagen. The first techmque
was a scoring model which was described as the purely
data mimng method used with the mtention of
establishing an association between inputs (predictors)
and the outputs. Determination of the association was
necessary for modeling the behavior of different cases for
instance pairing two cases that showed similar behavior.
The score quality was measured using a quantification
method called the Coefficient of Concordance (CoC). CoC
was determined in five steps: involved assigning scores
to each identified case in a data set after which cases
bearing the same score were grouped together. Different
cases (‘good” or ‘bad’) in each group were then counted
and then ordered in descending order of their scores.
Finally, the CoC was calculated as a percentage of the
cases. The second modeling technique was a BN (a data
and knowledge model) that used pipe particulars, soil
surrounding and pipe pressure as input parameters. As a
result, the model produced an estimate of the pipe history
and three other limit functions given as: hoop stress linit,
a function that described pipe failure due to hoop stress.

Fatigue limit that described the pipes capability to
endure stress and shear stress limit, describing pipe
failure due to shear stress. Part of their results, indicated
that the scoring model had produced a lower maximum
burst risk than the Bayesian model and was described as
more homogenous in its performance.

This research basically presented an mtroduction on
how to model underground pipelines using data mning
methods. Both the BN model and the scoring model were
not exhaustively discussed, hence creating need for
further mvestigation if reliable models are to be produced
from them. However, the ability of application of prior
knowledge and expert experience for BN modeling was
comparatively highlighted. The data requirements for
this study included pipe details (age, length, diameter,
material, number of previous bursts, year installed, traffic
frequency in pipe surrounding and house count along the
pipeline) for the scoring model. The BN model made use
of pipe material, depth and mean diameter, method of
installation, previous repairs, temperature, soil type
surrounding pipe and rainfall amount. Tt is noteworthy to
mention that the BN model proposed in this case only
estimated the pipe history and three other lunited state
functions.

Poulakis et al. (2003) used a Bayesian technique
coupled with hydraulic simulations to develop a model for
detecting leakages in water pipes. The methodology was
used because of its ability to handle uncertamties in
measurements and modeling. The modeling procedure
involved an assumption that it would be possible to
detect a leak by cormrelating the changes mn flow
characteristics to the changes in the hydraulic patterns for
a given network. Tt was also highlighted that observed
changes 1n the hydraulic model were indicative of pipe
damage hence pointing out the location and extent of the
damage. Generally, the proposed strategy was based on
an argument that pipeline leakage (in one or more
location) involves liquid outflow in the leakage location.
believed to change the
characteristics of a pipe, for mstance, causing a change in
the flow rate, pressure heads and even a change in the

This outflow was flow

acoustic signals. However, the magnitude of the deviation
1n pipe flow 15 dependent on the position and severity of
the said damage. Given the flow measurements obtained
from sensor readings and a data management system,
estimates of the probability of leakage events were
obtained with the most probable event identified as that
with the highest probability. The estimation also mcluded
the magnitude and location of leaks. Other leak events
were ordered according to their relative probabilities.

The study abovementioned mcorporated the use of
sensor measurements, hydraulic simulation and Bayesian
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models for the determination of leak locations and leak
extent or severity of a leakage. The Bayesian models were
modified to fit in with the other measurement aspects for
the purpose sunulating a possible leak event, after which
they were applied to a pipe network. Device noise, leak
severity, error modeling and sensor configuration issues
were also addressed given that sensor usage was
mcorporated m the study. For quality measurement
reading and modeling precision, the researchers
suggested that most favorable sensor location plans
ought to be inproved as this would unprove the reliability
of the predicted estimates. Data used basically mcluded
informaticn derived from flow test data.

Doguc and Ramirez-Marquez (2009) presented a
method for comstructing a BN for forecasting system
reliability using historical data available. Their objective
was to minimize the need of experts in the development of
BNs, reason being that humans are prone to errors both
mtentional and unintentional which could lead to
miscalculations. The proposed method involved the use
of K2 algorithm. K2 algorithm is a machine-learning
algorithm that uses canonically ordered sets of variables
to discover relations among them through the use of
predefined scormng functions and heurstic techniques
and is used for association rule mining. Tt searches the
best set of parents for a node with the heuristic properties
to help reduce the search space from exponential to
quadratic. Conditional probabilities were then computed
and stored in Conditional Probability Tables (CPT) ina
BN and later the Baye’s rule implemented to get the
overall success of the system

It 15 a fact that human intervention 1s prone to
mistakes which may lead to unreliable results and finding
a good number of experts for construction of BN models
1s costly, limited and difficult at the same time. However,
as pointed out m the study, m order to inprove the
accuracy of the K2 algorithm, the researchers recommend
that existing should be taken into
consideration assoclations, an aspect which would
require human intervention. The correctness and accuracy
of reliability estimation are dependent on the resulting BN
model and the accuracy of the model also requires more
mput which may not be available. The data from which the
network was constructed and tested was however not
indicated and for the improvement of its precision, human
expertise is still a requirement.

Wang et al. (2010) applied Bayesian mference to
assess the deterioration rate of pipes. The study however
was more focused on the quantification of factors that
majorly affected pipe deterioration. To achieve this, an
approach usmng Bayesian configuration against the
pipe condition together with Prior knowledge of water

associations

assessment procedures was applied to generate the
weight of influence of the failure factors. The process was
divided into three steps. First, pipe data was used to
generate relative weights of the factors. This was done by
utilizing expert recommended values and use of Bayesian
inference for the weight generation. The Markov Chain
Monte Carlo (MCMC) method was then employed to
numerically solve the Bayesian posterior distributions and
for the Bayesian fitting. Secondly, evaluation of the
influence of each factor on model performance was done,
one at a time. This assisted in the determination of how
each given factor contributed to pipe condition. Lastly,
simplification of the model was attempted. Here, a realistic
predictive model with the least factors was obtained,
dropping out factors that had the least influence on pipe
condition. A test was then carried to check if the model
obtained accurately fit pipe condition without the
excluded factors. Among the results, pipe diameter, the
iner and outer coatings were found to be quite influential
and significant for assessment. Trench depth, electric
recharge and the number of road lanes had small weights
and therefore were considered not so significant.

The feasibility of using Bayesian theory combined
with expert knowledge for pipe assessment was
demonstrated in the study. A statistical understanding of
how different factors contribute to pipe failure was
relayed. This shows that duming analysis of factors
affecting deterioration, pipe data can be effectively
exploited without basically looking for pipe failure
mechanisms that may be difficult to find Results
produced by this work were quite consistent to those
found 1n other studies, for instance pipe age was found to
be the most influential factor affecting pipe condition.
However, the study reported used data from literature, no
actual application of the model to a working distribution
network. The data used included pipe details from three
pipe materials: cast iron, steel and ductile cast iron.
Selected properties included pipe material, size, age, inner
and outer coating of pipe , pipe bedding condition, soil
condition, electrical recharge, trench depth, pipe
operational pressure and number of road lanes close to
pipe.

Francis et al. (2014) presented a knowledge model for
pipe breaks using BBNs and utilizing pipe break data
from mid-Atlantic United States (US). For learning the BN
structure, the researchers used the Grow-Shrink (GS)
algorithm in the constramt-based and the RSMAX2
algorithm in score-based methods. This integration of
methods was to help in improving the fit and
interpretation of the BBN. The models were then
evaluated using their negative log-likelihood. However,
the results presented suggested that in the dataset there
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were relationships between wvariables that were not
well-fit. The data set used was both zero-inflated at the
mdividual pipe segment level and aggregated at the
census tract level and therefore, individual pipe segment
models were not able to be constructed. In addition,
differentiation between signal and noise was quite
difficult.

At the time of the research, the researchers reported
unavailability of supervised discretization technique. This
made it difficult to work with continuous data while
dealing with continuous discrete models. Moreover, the
researchers highlighted the need for standardization of
data collection to direct utility operators during data
collection. This work however, apart from not totally
mcluding pipe characteristic information, did not really
show how pipe characteristics like age, diameter and
material among others contribute to failure. A wider range
of other variables were however used including location
data, soil characteristics, population details and weather
condition.

Kabir et al. (2015) proposed the use of Bayesian
Belief Networks (BBNs) to assess the risk of failure of
metallic pipes. In their model, different factors affecting
Pplpe deterioration were classified mto four main categories
and incorporated in the modeling procedure. They
included: the Hydraulic Capacity Index (HCT), Structural
Integrity Index (SII), Water Quality Index (WQI) and
Consequence Index (CI). Graphical representation of the
belief network was generated using Netica (commercially
available software). Failure risk was then categorized in
three levels: low, medium and high risk levels. These risk
levels were then used to check the BBN model using three
hypothetical scenarios: depicting a situation where the
criteria used 1s mn the worst state condition, where the
criteria is of average condition and where the criteria is of
favorable condition. Among the results it was discovered
that failure risk of a main would be very high if it has poor
struchural condition in terms of very large diameter, a very
long length and a maximum age; poor hydraulic condition
due to low water pressure and low water velocity; poor
soil condition in terms of high pH, low resistivity, poor
drainage condition and low reduction and oxidation
(redox) potential, all which increased soil corrosiveness;
and finally, populated area which meant maximum land
use.

In this reserch, factors leading deterioration and
eventual failure as well as the consequences of the
failures were studied. The model construction made use
of these robust attributes whose information was
collected from different types of documents, ranging
from manufacturing and pipe design information to
plpe maintenance reports, visual inspection among

others. Among the three broad information category used
the specific data used included water Location data, soil
characteristics, population details and weather condition
data. There are so many direct and mdirect consequences
that accompany failure which may not be adequately
quantified. The work reported examines a rather safe way
through which failure consequence may be qualified and
analyzed without being mtrusive.

Kabir et al. (2015) for a second time, proposed to
develop a Fuzzy Bayesian Belief Networle (FBBN) model
for assessing the safety of Oil and Gas pipelines (O&3)
failure which was done by mcorporating fuzzy logic into
BENs. Their aim was to build a novel and efficient model
for safety assessment for evaluating the pipelines failure
in dealing with uncertainties. The variables mcorporated
in therr study included linguistic variables and fuzzy
number based probabilities instead of only using crisp
probabilities that are usually required for Bayesian
inference. Fault Trees (FT) were produced and then later
transformed into the FBBN by first; directly transforming
the primary events, intermediate events and the top event
of the FT into parent nodes, intermediate nodes and child
nodes in the comresponding BBN 1in the same order.
Secondly, expert analysts were mvited to define the
likelihood using linguistic terms, after which
transformation of the fuzzy number into a crisp value was
then performed. The BBN based safety assessment model
was however constructed using commercially available
software package, Netica. Data was collected from a large
number of souwrces and their results indicated that
construction defects, mechanical damage, overload, poor
installation and worker experience or quality of works
were the factors that mostly affected the failure of oil and
gas pipelines.

The study heavily relied on expert opinions and
decision making for majority of its procedures. The fuzzy
prior probabilities and fuzzy conditional probabilities of
both the parent and child nodes were provided by experts
based on their experience. Construction of the Bayesian
model and the FT was solicited by experts, so was the
obtaining of the conditional probabilities used in the BBN
model. Experts were again used for the determination of
the proper linguistic variables used in the modeling
process and for the proper mapping of the FT to the
FBBN. For weight generation of the most credible
decision making and establishment of the normalization
factor, experts were used and so on and so forth. The
modeling required too much expertise that somehow, it
proves to be very expensive. In addition, expert decisions
and judgments are likely to conflict one ancther leading to
confusion. A simplified summary of the models reviewed
1n this study 1s illustrated i Table 2.
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Table 2: Summary of BBN models

Article reference

Title

Type of prediction

Method used

Parameters used

Bayesian Beliel models lor assessing pipe lailure

Rabovic et al. (2002)

Poulakis et af. (2003)

A data mining approach to modeling

Teakage detection in water
pipe networks using a Bayesian
probabilistic framework

Risk of failure of
water supply assets

TLeak location and
magnitude

BN method and
Scoring method

Hy draulic
simulation and
BNs

Age, length, diameter, material, number of
previous bursts, year installed, traffic frequency
in pipe surrounding and house count along
the pipeline (scoring model). Pipe material,
depth and mean diameter, method of
installation, previous repairs, temperature, soil
type surrounding pipe and rainfall amount
(BN model)

Pipe flow characteristics like the flow rate,
pressure heads and sensor signals

Doguc and A generic method for estimating System reliability K2 machine No data indicated
Ramirez-Marquez system reliability using Bayesian learning
(2009) networks algorithm
Wang et al. (2010) An assessment model of water pipe Deterioration rate Bayesian Pipe material, size, age, mnner and outer
condition using Bayesian inference inference coating of pipe, pipe bedding condition, soil
condition, electrical recharge, trench depth
pipe operational pressure and number of road
lanes close to pipe
Kabir et ai, (2015) Evaluating risk of water mains failure  Risk of failure BBN Hydraulic Capacity index (HCI), Structural
using a Bayesian belief network Tntegrity Index (SIT), Water model Quality
Index (WQI) and Consequence Index (CT)
Francis et al. (2014) BRayesian Belief Networks for Probability of BBN learning Location data, soil characteristics, population
predicting drinking water failure details and weather condition data
distribution system pipe breaks
Kabir et ai. (2015) A fuzzy Bayesian belief network Safety assessment FBBN General pipe failure data

for safety assessment of oil and
gas pipelines

RESULTS AND DISCUSSION

The principal motivation belind construction of
models using BBNs 1s in their ability to handle different
levels of uncertainty. As indicated in the various articles
studied herein, pipeline operation, pipe failure and pipe
assessment all come with inherently risky properties.
During operation, pipelines are exposed to several risky
and uncertain scenarios causing detericration and
eventual failure. In addition to this when pipelines
undergo operational assessment, uncertamn situations
such as determmation of precise location of failure, actual
causes of failure, proper assessment methods and tools
assessor’s qualification among others are encountered.
This leads to the unveiling of equally uncertan,
mcomplete and or nregular records of data. The ability of
BNs that is portrayed in the various ways on how they are
able to handle diverse scenarios of uncertainty therefore
makes them a pretty good candidate for predicting pipe
conditions. Inclusion of prior mformation based on expert
knowledge when using BNs ensures that prediction of
uncertainties is controlled through proper formulation of
the priors. These prior values represent the system
dynamics that are not strange to human expertise.

However, excessive inclusion of expert judgment and
opinions as illustrated in some studies (Kabir et al.,, 2015)
also prove to be very complicated. When a large munber
of experts are involved in decision making, expert opinion

overload arises. This leads to a conflicted and disorderly
decision making process, even though it is argued by
Kabir et al. (2015) that choices are made based on the
expert’s experience. A model 15 likely to have different
beliefs about the variables to be included, connections,
probability generation, among others. This consecuently,
further complicates the decision making process and
increases the levels of uncertainty when it is the same
uncertainty being tackled. Additionally, humans are
also prone to mistakes both mtentional and umntentional
(Doguc and Ramirez-Marquez, 2008). Furthermore, finding
a good quality and quantity of experts for opinions in
almost every process of modeling is complicated, limited
and costly. The universal objective of modeling of
pipeline asset deterioration and failure 1s the production
of the best possible management tools at the lowest
possible cost, hence the proposition by Doguc and
Ramirez-Marquez (2009) to minimize expert intervention.

BNs are used to determine different aspects of
pipeline failure including risk of failure (Babovic ef al,
2002; Francis et al, 2014) and deterioration rates
(Wang et al., 2010), due to the fact that they can quantify
factors that majorly influence pipe deterioration and also
relate these factors to pipe condition. This 1s fundamental
in the event that utilities are faced with difficulties
such as lack of funding, insufficient manpower; lack of
instrumentation, among other factors that collectively lead
to information shortage. It then becomes easier to point
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out between the critically needed aspects and those that
may be ignored. They are also used to analyze safety
assessment methods (Kabir et al., 2015), failure
probability (Fenton ef al., 2002) and system reliability
(Doguc and Ramirez-Marquez, 2009) among others.
Although, different parameters or factors may be related
to pipe deterioration condition, the assumption that
leakages changes the flow characteristics of a pipe may
entirely not be true because some leak incidents may not
be so obvious. Cutting across majority of these models,
the basic parameters exploited for modeling pipeline
failure mclude the general pipe faillure data comprising
the diameter, age, material, scil corrosiveness or soil
condition, break rate, pipe length, pressure and traffic
type in that order. This is followed by other factors like
pipe depth, previous repawrs and weather condition
among others. Pipe age and pipe break rate are however
unanimously voted as the biggest contributors to failure.

Current state of research: Establishment of universally
reliable and acceptable pipeline detection, deterioration or
prediction models that are fit for use globally is not easy.
Actually, 1t 1s close to unpossible (Clair and Sinha, 2012).
This 18 due to regional, environmental, economic,
operational and even technological differences available
to utilities in different regions. Therefore, for effective
modeling of a pipeline networks there 1s need for
customization (Clair and Sinha, 2012; Klemer and Rajami,
2001; Wang et al, 2010). Modeling parameters and
strategies should be tailored to different utilities, putting
m mind their goals and pipe assessment conditions.
Although, a number of factors could be similar to most
utilities, differences still lie among them in terms of pipe
conditions and operational conditions, mformation
availability and regional mapping. Therefore, the greatest
concern lies on location specific risks. Pipeline
deterioration processes occur differently in particular
regions due to specific regional risks affecting the pipes
as well as the consequences of pipe leakage to these
regions. In addition, modeling of failure in high risk zones
has not been really tackled, neither are they depicted by
the different models reviewed, except in the oil and gas
pipelines.

Definition of risk 1s relative. However, risk 1s generally
governed by the likelihood of an event (risk occurrence)
and the magnitude or the degree of loss (in this case,
failure and consequences), respectively (Buttrick ef al,
2002). Risk determination 1s equally not easy, although we
can estimate where it is most probable and the severity of
its consequences. Risk assessment models for high risk
zones ought to be developed, taking into consideration
the severity of the consequences of the various forms of

failure. Generally, inclusion of failure consequence in
modeling has not been fully exploited. Kabir et al. (2015)
however, incorporated consequence of failure parameters
1n their study, in the form of population density, land use
and pipe diameter. Nonetheless, further research on
identification of additional ways on how the impacts and
severity of failure can be incorporated into predictive
modeling 1s highly recommended. Advanced exploration
on the use of both data based and knowledge based BBN
modeling for determination of water networl risk index for
rehabilitation prioritization 1s also recommended. This will
be essential in supporting municipalities and utilities with
proactive decision making tools that addresses water
pipeline failure in time even when under constrained
financial Limits.

CONCLUSION

In this study, a detailed review, however not
exhaustive on how predictive modeling of pipeline failure
using Bayesian Networks has been done. BNs are
confirmed to be cquite effective in handling different
aspects of uncertainty that are associated with pipeline
operation, failure and pipelme failure assessment. A
number of gaps exhibited by the models studied herein
have also identified and adequately relayed. In a nutshell,
it 15 noteworthy to mention that: Pipeline failure is
inevitable, nonetheless quite complex with inadequate
comprehension of the failure mechanisms and processes.
Additionally, availability of data that can be utilized to
model these failure processes 1s limited. This 1s because
utilities are faced with barriers such as lack of adequate
investment in pipe maintenance leading to a shortage in
pipe failure records. The restricted data availed by utilities
additionally; fail to meet the standard requirements for
data collection, recording and analysis procedures. These
are the greatest contributors to uncertainty.

However, the usefulness of network analytical models
15 that they are able to overcome such problems
{(uncertainty) associated with data madequacy. This on
the other hand, does not mean that water utilities should
stop or avoid the collection of available data and keep an
wnventory of pipe operation effectively. It 1s also depicted
from the different articles studied herein that; a great deal
potential lies in the utilization of existing data. Therefore,
more research on information discovery from limited
should be encouraged so as to engage in better decision
making. There 1s lack of a standard definition of failure.
Available definitions are basically based on suitability,
even though evidence of failure is quite uniform, resulting
in leakages. Identification of the kind of mformation
necessary for modeling 1s quite challenging and warrants

3171



J. Eng. Applied Sci., 12 (12): 3163-3173, 2017

further research. A universally acceptable or a
standardized level of modeling accuracy has not been
clarified yet which is another area that probably requires
further research.
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