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Abstract: The main purpose of this study 1s to investigate the performance of the Quarter-Sweep AOR (QSAOR)
iterative method by using Caputo fractional derivative operator and implicit finite difference scheme to solve
time-fractional diffusion equation. To solve the problems, a linear system will be constructed via discretization
of the one-dimensional linear time-fractional diffusion equations by using the Caputo’s fractional derivative.
Then the generated linear system has been solved using the proposed QSAOR iterative method. In the
addition, the formulation and application of the QSAOR method to solve the problems are also presented. Two
numerical examples and comparison with FSAOR and HSAOR methods are given to show the effectiveness of

QSAOR method.
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INTRODUCTION

Many science and engmeering problems can be
modeled mathematically as differential equations
(Oldham and Spanier, 1974; Podlubny, 1999a). Since, the
rapid growth of computer technology, the numerical
techniques are used to solve a large size problem. Then,
there are some numerical methods proposed to solve the
Time Fractional Diffusion Equations (TFDE) such as
Crank-Nicolson finite difference method (Sweilam ef ai.,
2012), two mnplicit finite method (Ma, 2014) and lugh-order
finite element methods (Jiang and Ma, 2011). In this
research, one dimensional time-fractional diffusion
equation will be solved nmumerically and represented as
follows:

FU(x, 1)

a(x) P U )

+ b{x)

2°U(x, t)
e +c(x)U(x, t)
(1)
With boundary conditions u(0, t) = g,(t), UL, t) =
g, () and the mitial condition U(x, 0) = f{x). To get the
approximate solution of the Time Fractional Diffusion
Equation (TFDE) problem the problem needs to be
discretized to form an approximation equation. Based on
the implicit finite difference scheme and Caputo fractional
derivative operator, the approximation equations can be
derived to construct a linear system at each time level. For
to solving linear systems, many researchers have also
discussed several concepts of the iterative methods
such as Young (1971), Hackbusch (1995) and Saad
(1996). In addition to these iterative methods, Abdullah
(1991) mitiated Half-Sweep iteration which s one of the

most known and widely used iterative techniques to solve
any linear systems. Differently from the Half-Sweep
iteration approach, Othman and Abdullah (2000) have
expanded this approach to initiate the Modified Explicit
Group (MEG) method based on the quarter-sweep
approach. In this study, we propose the QSACR
iterative method for selving time-fractional fractional
diffusion equations based on the Caputo’s implicit finite
difference approximation equation. To demonstrate the
capability of the QSAOR method, we also implement
the Full-Sweep AOR (FSAOR) and Half-Sweep ACR
(HSAOR) iterative methods bemng used as a control
method.

Before discretizing Problem (1), let us consider some
definitions that can be applied for fractional denivative
theories in order to construct the approximation equation
of Problem (1).

Definition 1: The Riemann-Liouville fractional integral
operator, I* of order-a is defined as Podlubny (1999b),
Kilbas et al. (2006) and Zhang (2009):

T*f(x) = ﬁi(x —tPf(tdt, a>0, x>0 (2)

Definition 2: The Caputo’s fractional partial derivative
operator, D of order-t is defined as Kilbas et al. (2006)
and Caputo (1967):

D*f(x) = r(ml— a)j

0 wwo G
(X _ t)oc i+l
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with m-1<g<m, meN, X=>0. From Definitions 1 and 2,
T" (o) 18 kmown as a gamma function which 13 given by:

o) = [xe™dx
i}

For obtain the numerical solution of Time-Fractional
Diffusion Equation (TFDE’s) in Eq. 1 we get numerical
approximation equations by using the Caputo’s derivative
defimtion with Dirichlet boundary conditions and
consider the non-local fractional derivative operator.
This approximation equation can be categorized as
stable strength  of
Problem (1), the solution domain of the problem has
been restricted to the finite space domain O<x<vy with
O<<] whereas the parameter ¢ refers to the fractional

unconditionally scheme. On

order of space derivative. In order to solve Problem
(Eq. 1), let us consider boundary conditions of Problem
(Eq. 1) be given as:

U(O= t) = gﬂ (t)> U(l, t) = gl (t)
and the imitial condition:

Ulx, 0) =f(x)

where, g,(t), g,(t) and f(x) are given functions. Based ona
discretize approximation to the time fractional derivative
m Eq. 1, we consider Caputo’s fractional partial derivative
of order ¢, defined by Hadjidimos (1978) and Saad (1996):

0*u(x,t) _ 1 T Ju(x —s)

(t—s) *ds, t>0, 0<a<1
ot* Din-1) ot

0

)
Quarter-sweep implicit finite difference approximation:
By using Eq. 4, the formulation of Caputo’s fractional
partial derivative of the first order approximmation method
is given as:

D?Ui,n = ch,k Emga) (Ui,n—jﬂ _Ui,n—]) (5)
1=1

and we have the following expressions:

G, ——
=5 TP -l - ok

And:
(DJ(DL) — jl—m 7(] 71)1—m

Previously to discretize Problem (1), let the solution
domain of the problem be partitioned uniformly. To do
this we consider some positive integers m and n in which
the grid sizes in space and time directions for the finite
difference algorithm are defined as h = Ax = y-O/m
and k = At = T/n, respectively. Based on these grid sizes,
we develop the uniformly grid network of the solution
domain where the grid pomts in the space interval
[0, v] are shown as the numbers x; = 1h,1=0,1, 2, ..., m and
the grid points in the time interval [0, T] are labeled
t=1k,7=0,1,2, .,n Then, the values of the function
U(x, t) at the grid points are denoted as U, ; = Ulx, t).
According to Eq. 5 and using the implicit finite difference
discretization scheme, the quarter-sweep implicit finite
difference approximation equation of Problem in Eq. 1 to
the grid point centered at (x;, t;) = (ih, jk) is given as:

n o« 1
Gm,kE(Dj( )(U1,n—j+1 _U1,n—j) = 0"1 161’12 (Ui,{n -
®)

)+bli(U

2U1,n +U1+4,n Sh 1+4.n

- U1—4,n)+ C1U1,n

Fori=4,8, .., m-4. Based on Eq. 6 this approximation
equation 1s known as the fully implicit fimte difference
approximation equation which 1s consistent first order
accuracy in time and second order in space. Particularly,
the approximation Eq. 6 can be rewritten based on the
specified time level. For instantce, we have for n>2:

Goc,k ngm)(Ui, n—j+l 7U1,n—j) :p1Ui—4,n + (7)
i=1

q.U, ,tqU,  +1U

1+4, n
Where:
p— al — bl
P 16n? " gn
6 = o
q1 1 Shz
O b;
L z -
16h 8h
Also, we get forn = 1:
7p1U1—4,1 + q:Ul 1 7II1U1+4, i~ f1 1 1 = 4’ 8""’ m—4 (8)
Where:
(o)
W, =1
q: = Gn(, k 7q1
f1,1 =G, i 7Ui,1
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Furthermore, by using Eq. &, it can be seen that the
tridiagonal linear system can be constructed in matrix form
as:

AU =f )
Where:
q: T,
P, 4, L
A= Pi qrz P
“Pa-s q;—a s
| s i
T
U:[Um Ugy Uy L Ugsy UmA,J
T
f= [U4,1+P1Um Uy, Uy, L U, Um-4,1+Pm-4Um1]
MATERIALS AND METHODS

Formulation of QSAOR method: Refer to the linear
system (Eq. 9), it can be seen that the main characteristics
of the coefficient matrix of the linear system have large
scale and sparse. It means that the iterative methods are
suitable option to solve the linear system (Young, 1971).
Therefore, in this study, we consider the application of
QSAOR method as linear solver (Eq. 9). Particularly, the
QSAOR method 1s essentially the extension of the
Half-Sweep Accelerated Over Relaxation (HSAOR)
iterative method. The main purpose of the Quarter-Sweep
iteration is to reduce the computational complexities
during iteration process. Actually, development of the
QSAOR method 1is the combination between the
Quarter-Sweep iteration concept and Accelerated Over
Relaxation. To derive the formulation of AOR method, let
the linear system (Eq. 9) be expressed as summation of the
three matrices:

A=D-L-V (19

where, D, L and V are diagonal, lower triangular and upper
triangular matrices, respectively. According to Eq. 10, the
QSAOR iterative method can be defined generally as
(Sunarto et al., 2014a, b, Hadjidimos, 1978, Tian, 2003):

U =(D-oL)  [BV+{B-w)D+
1-BDJU¥ + BD -oL)'f

(1)

where, U* represents an unknown vector at kth iteration.
Also, the implementation of the QSAOR iterative method
may be described n Algorithm 1.

Algorithm 1 (QSAOR method):
i. Tnitializing all the parameters. Setk =0.
ii. Forj=1,2,...,n-1,nandi=4,8§, ..., m-8 m-4 calculate:
U = (D - wl) [PV + (B— oD +(1- DU +B(D - owL)'f
iii. Convergence test. If the convergence criterion, i.e.:
(ﬂU(k B Utk)| < e =10 is satistied, go to Step (iv).
therwise go back to Step (ii).
iv. Display approximate solutions.

RESULTS AND DISCUSSION

Numerical experiment: For the comparison purpose, two
examples of time-fractional diffusion equations were
considered. Both examples will be chosen from well-posed
equations. Also, three different proposed iterative
methods such as FSAOR, HSAOR and QSAOR will be
implemented. In this study, we will consider different
values of ¢ = 0.25, 0.50 and 0.75. For implementation of
these three iterative schemes, the convergence test
considered the tolerance error which is fixed as e = 107"

Examples 1: Consider the following time fractional mitial
boundary value problem be given as Ali et al. (2013):

d*U(x,t) _ UG D

e o L0<a<logx<ht>0 (12)

where, the boundary conditions are given in fractional
terms:

2kt™ Ud, )_ 2kt (13)
Cia+D)’ F(a+1)

U(0,1) =

and the 1nitial condition:
Ulx, 0) =x° (14)

From Problem (12) as taking « = 1, it can be seen that
Problem (12) can be reduced to the standard diffusion
equation:

aU(x, t)  0*U(x, t)
a

L0<x <y, t20 (15)

with the initial and boundary conditions:
Uix, 0)=x", U0, t) = 2kt, UL, t) = 1" + 2kt

Then, the analytical solution of Problem (14) is
obtained as follows:

U(x,t) =x" + 2kt

Now by applying the series:
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Table 1: Comparison between No. of iterations (K), the execution time (sec) and maximum errors for the iterative methods using examples 1 at o = 0.25,

0.50, 0.75
=025 o =0.50 o =075
M Methods K Time Max. error K Time Max. error K Time Max. error
128 FSAOR 657 1.93 9.95e-05 615 1.83 9.84e-05 613 1.79 1.29e-04
HSAOR 517 1.78 9.95e-05 510 1.54 9.84e-05 599 1.39 1.29e-04
QSAOR 234 091 9.9e-05 396 1.02 9.84e-05 337 1.03 1.29e-04
256 FSAOR 870 6.38 9.95e-05 659 2.99 9.84e-05 630 1.72 1.29e-04
HSAOR 857 3.02 9.95e-05 425 2.93 9.84e-05 413 1.50 1.29e-04
QSAOR 255 111 9.95e-05 215 1.36 9.84e-05 212 1.33 1.29e-04
512 FSSOR 4940 31.35 9.96e-05 3080 22.62 9.84e-05 1301 16.67 1.29e-04
FSAOR 870 6.54 9.05-e05 859 6.37 9.84e-05 830 6.45 1.29e-04
QSAOR 452 231 9.95e-05 417 2.23 9.84e-05 448 227 1.29e-04
1024 FSSOR 19033 4572 9.97e-05 12232 101.21 9.80-e05 5911 105.27 1.30e-04
HSAOR 4940 33.28 9.96e-05 3080 42.68 9.80e-05 1301 17.87 1.29e-04
QSAOR 2673 20.97 9.96e-05 1664 13.26 9.84e-05 698 5.95 1.29e-04
2048 FSSOR 70547 1142.09 1.00e-04 45700 1342.00 9.89%-05 22474 1002.85 1.30e-04
HSAOR 19033 512.59 1.00e-04 12232 338.14 9.85e-05 5911 157.02 1.30e-04
OSAOR 10332 15837 9.96e-05 6633 100.86 9.85e-05 3200 49.16 1.30e-04
Table 2: Comparison between number of iterations (K), the execution time (sec.) and maximum errors for the iterative methods using examples 2 at o = 0.25,
0.50,0.75
=025 o =0.50 o =075
M Methods K Time Max. error K Time Max. error K Time Max. error
128 FSAOR 370 6.19 1.94e-02 260 5.86 8.29e-02 257 5.80 1.37e-01
HSAOR 199 511 1.95e-02 154 5.04 8.30e-02 146 5.02 1.37e-01
QSAOR 72 2.79 1.95e-02 61 2.05 8.30e-02 48 2.25 1.37e-01
256 FSAOR 1761 1930 1.95e-02 809 11.82 8.29e-02 291 7.39 1.37e-01
HSAOR 545 6.25 1.95e-02 328 5.70 8.29e-02 163 5.29 1.37e-01
QSAOR 166 3.02 1.95e-02 116 2.39 8.30e-02 72 2.40 1.37e-01
512 FSSOR 6746 125.09 1.94e-02 3240 63.93 8.29e-02 1471 30.79 1.37e-01
FSAOR 2246 19.45 1.95e-02 1402 14.27 8.29e-02 625 9.09 1.37e-01
QSAOR 849 7.63 1.95e-02 629 6.97 8.30e-02 279 477 1.37e-01
1024 FSSOR 25054 866.80 1.94e-02 12126 435.44 8.29e-02 5644 208.20 1.37e-01
HSAOR 8478 117.00 1.94e-02 5313 76.75 8.29e-02 2461 38.54 1.37e-01
QSAOR 3301 28.86 1.95e-02 2425 23.05 8.29e-02 1099 13.21 1.37e-01
2048 FSSOR 91984 6092.40 1.94e-02 44563 1428.60 8.29e-02 20921 1609.51 1.37e-01
HSAOR 40541 1109.00 1.94e-02 19650 557.72 8.29e-02 9198 268.45 1.37e-01
QSAOR 18209 272.76 1.94e-02 8832 139.41 8.20e-02 4126 08.64 1.37e-01%
—1n o frn -+ no+H Lt 1 8
U(x,t)—EaU(Xo)t 223 Ux,0) Ux,0)=x (18)

at™"  DTno+i+)

n=10 n=11=10

To Ulx, t) for O<e<1 it can be shown that the
analytical solution of Problem (16) is given as:

tEX.
Uz, O=x"+2k——
I'a+1)

Examples 2: Let us consider the following time fractional
initial boundary value problem be defined as Ali et al.
(2013):

Ulx, ) _ 1 " U, 1)
ot 2 o’

,0<a<L0sx<y, t>0

(16)
where the boundary conditions are given in fractional
terms:

U, ty =0, U(L t) =¢' (17)

and the imitial condition:

From Problem (19) as taking & = 1, it can be shown
that Eq. 19 can also be reduced to the standard diffusion
equation:

Ux, t) 1. U, 1)

o X T T 0sxsn >0 (19)
X

Then, the analytical solution of Problem (17) is
obtained as follows:

Ulx, t) = x%'

Now by applying the series:
’IB“U(X Ot SPIUK 0 e
Ux, t)=
(0= ngu n! ;11,20 ™" Dno+i+1)

to Ulx, t) for O<g<1 it can be shown that the analytical
solution of Problem (17) 1s stated as (Table 1 and 2):
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tnc th tBDL
+ + +..
Do+1l) Do+l Do+l

Ulx, t) =x* {1+

All results of numerical experiments for Problems (12)
and (15), obtamed from mnplementation of FSAOR,
HSAOR and QSAOR iterative methods are recorded in
Table 1 and 2 at different values of mesh sizes, M = 128,
256, 512, 1024 and 2048.

CONCLUSION

As a conclusion for the numerical solution of the
time-fractional diffusion problems this study deals with
the implementation of QSAOR iterative method to solve
a linear system generated by the Quarter-Sweep Caputo’s
implicit approximation equations. Through numerical
experiments results from Table 1 and 2, clearly it
demonstrates that two promising improvements in the
number of iteration (K) and execution time with
implementing a QSAOR iterative method have been
shown as compared to the FSAOR and HSAOR
methods. Overall, the numerical results showed that the
quarter-sweep iteration concept in association with the
AOR iterative method is superior and it has reduced the
computational complexity sigmficantly. Therefore further
mvestigation of two-step (Evans and Salumi, 1988,
Ruggiero and Galligani, 1990, Sahimi e al., 1993) iterative
methods should be considered for future works.
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