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Abstract: State estimation in power engineering is used as a tool to find the unknown parameter values from
the hypothesized model by utilizing the specified information available about the system. Due to random noises
that are added from different sources, the exact value of the state vector cannot be found. This study 1s an effort
to describe the simultaneous and individual confidence intervals for the state parameters in view of the
heteroscedastic structure of the error terms. The performance of the constructed intervals in terms of coverage
probability has been evaluated by using the Monte Carlo simulation study. The results of the study
demonstrate that it is an effective method for practical implementation in the state estimation a power system.
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INTRODUCTION

The theoretical soundness of the model used in the
power system state estimation is based on statistical
grounds. Measurements that are used m the state
estimation are polluted by noises which are added from
different sources. Even with the measuring instrument,
regardless of how carefully designed and well maintained
1t 18, noise always exits m its measurements (Montgomery,
2007). In general, the model used in the power system
estimation 1s based on deterministic and stochastic
parts.In the statistical aspect, these estimated values of
the state vector are called the pomt estimates which
usually come from the maxinum likelihood method of
estimation. Point estimation provides a single value as an
estimate of the true parameter whereby interval estimation
means, the interval which 1s likely to cover the true
parameter (Haln and Meeker, 2011). The values of the
estimated vector can be found by other method of
estimation like the ordinary Least Squares (short, 1.S)
method without making any normality assumption of the
error terms because this method does not require any
assumption about the probability distribution of the error
terms. In short, the point estimation of state parameters
can be achieved without a normality assumption. But for
mterval estimation, we have to make an assumption of
normality for random noises in order to draw the inference

about the unknown perameter. In addition to thus,
assumptions regarding the parameters of the assumed
distribution have also played a significant role in the
estimation procedure. The reliability of interval and point
estimates 13 affected by these parametric assumptions. For
example, relaxmg the assumption of the same common
variance or autocorrelation for all disturbance terms will
affect the desirable statistical properties of the least
square estimator (Montgomery ef al., 2006).

In the presence of the random errors only in the
measurements, the state estimator provides a reliable
unknown state vector while the
maccuracy can be resulted in the presence of other types
of gross or topological errors. That 13 why, bad data
detection and identification are also very important areas
of the interest in most of the research (Lin and Pan, 2007,
Dnguez et al., 2008).

In this effort, we have been extended the application
of statistical inference to power system engineering.
Before a similar attempt was made by Kyriakides and
Heydt (2006) but the validity of the found results relied on
parametric assumptions that were made about the error
terms of the model.

For the implementation of the derived results in this
article, an application has been taken from the power
system state estimation problem. The power system state
estimation is a fundamental method for on-line power

estimate for the
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system monitoring, analysis, control functions and has
been an integral part of the energy management system
since the innovative research of Schweppe and Wildes
(1970), Schweppe and Rom (1970) and Schweppe (1970).
It 18 a technmique of reading field measurements and
developmg the best estimate of the state of a power
system (Baalbergen et al., 2009). In the statistical context,
the state estimation of a power system is like the multiple
regression problem where the parameters to be estimated
are the bus voltage magmtudes and the phase angles
(Caro et al., 2013). The forgoing work is therefore in
conjunction with the effort carried out by Kyriakides and
Heydt (2006) under the generalized error structure model.
General expressions for the confidence interval are
described and applied in this study where the results in
the referred research can be deduced as a particular
case.

The major contribution of this research 1s an
implementation of the inference procedure in the
conventionally static state estimation procedures for a
power system. The state of a power system is actually not
static and 1s changed at every instant due to a change in
the random load and other disturbances. The statistical
estimation theory can, therefore, be implemented to
characterize the random behavior of the system
parameters. This research also highlights the importance
of the assumptions that have been taken about the error
terms in the hypothesized model.

MATERIALS AND METHODS

Model and estimation method: Inthe model form, the state
estimation problem can be written as:

Z =h(X)+e = HX+e (1)

Where:

H=0h (X)/dX = The Jacobian matrix of the order mxn

Z =z, z,.... z,]' = The vector of measurements

h(X)=[h, (X), = Measurements function vector

h, (X)...., by (XOT

X =[x, X.... X,|T= A state vector

€=[g,¢,..,e,]" = The vector of random errors

m = Number of measurements

n = Number of the parameters that are to
be estimated assumptions

E(e)=0 = Mean vector
Q=E(eeh = Diag var-cov matrix of random errors
with:
2 forall i=j
Blee)=10 o0
0, forell i#j,1,j=12,..,m

where, 6% 1= 1, 2, ..., m is associated with the accuracy of
the ith measuring device. The distribution is multivanate

normal, i.e., e~N (0, Q). Confidence intervals for the
unknown parameters in the nonlinear regression model are
approximated and based on the results in the asymptotic
theory (Gadzhiev, 1995; Bukac, 2008). In this case, the
estimated parameters do not have the desirable properties
(Huang et al., 2010). The emphasis here is not to elaborate
between linear and nonlinear estimation procedures at
this stage. But for the interest readers, details on the
nonlinear estimation procedures and their applications in
the context of probabilistic models can be found by
Ross (1990), Bates and Watts (2007).

The assumption of equal variances which has been
taken by Kyriakides and Heydt (2006), seems impractical
in the interval estimation of the state parameters of a
power systemn. Therefore, we have used the Model (Eq. 1)
i the construction of individual and simultaneous
confidence intervals with the assumptions as listed
above. Under these assumptions, the most recommended
method for the estimation is the use of the Weighted
Least Square (WLS) which s a sub class of the
Generalized Least Square method (GLS) (Hayes and Cai,
2007). By assuming the model given in Eq. 1, the solution
is obtained by minimizing the following objective
function:

®(X) —min(Z-ﬁ)TxW(Z-ﬁl (2)

Where:

=gt 1s the weighted matrix.

Construction of confidence interval: Tn this study, we
have developed the individual Confidence Intervals (CI)
for the state imknown parameters and also extended the
same to the sunultaneous construction of the confidence
region with the probability coverage 100 (1-¢)%.

Estimation of the individual interval: In correspondence
to Eq. 1, consider the following the transformed form of
Eq 3

Z, =HX+e, (3)
Where:

1 1

_t -1 -1
Z,=QZ H=QHe =Q %, & =N(0I)

Now, the error variances are the same in Eq. 3. Hence,
by simply using the LS method, the unknown state vector
can be obtained from Eq. 3 and 1s given by:

% -(nH) " @

t
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Now, Eq. 5 can further be written as:
}A(r 'X:(HtTHt )71 HtTSt )
this yield:
E(X} ~Xand Z(X} = (1) (6)

from Eq. 5 and 6, it 1s deduced that:

Since, E(Z,)# Z so let us define a new estimator
unbiased 7 =HX, such that E(z,)=z. Now, let 3 -7 -7
be the weighted residuals from the model given in Eq. 4,
then:

g =W/1/25a 7
Where:
e, =27, or & =(1-He with H'=H({H'WH) H'W

From Eq. 7, it is implied that:

E[sﬁ} =0, v{é\tj - W (1 —H*)W'}é

N{OVUJ

The sum of squares of the weighted residuals is now
given by:

Hence,

SSE, = §'¢,

This follows the ¥* distribution with v = m-n degree
of freedom. Hence, the ratio: t1=}f“_x‘,i=], 2..m follows
afa

t-distribution with v d.f. Where, . fssE, and w, 1s the ith
Y v

diagonal element of the variance covariance matrix given
m Eq. 7. Therefore, the individual 100 (1-a)% confidence
mterval for the state parameter 1s x; given by:

P{ta <Zu % <ta} =1-a &)
2 Gt O‘)h 2
Or:
X Tt G4,
2,\/

The expression that is described by Kyriakides and
Heydt (2006) for one at a time confidence intervals is

the same as given in Eq. 8 with the exception that the
standard error for each estimator here is based on the
weighted residuals.

Estimation of the joint interval: The individual interval
estimation for each parameter in the multivariate model
may be a poor estimate. This 15 due to the fact that
variability 18 measured by the interval estimate for a
particular parameter. This is inferred under the assumption
of the known optimized values for the all other parameters
in the model (Lane end Mouchel, 1994). This 1s not clearly
a realistic assumption. This leads the construction of the
simultaneous confidence region with an overall
confidence level probability of (1-c).

Under the known weights structure of the error terms,
the most common strategy for the cormrectness of
heteroscasdicity is weighting the measurement which in
turn gives estimates of the desired statistical properties
(Long and Ervin, 2000). Therefore, the simultaneous
confidence interval can be approximated by using Eq. 3 as
follows the ratio:

% %) (A7) (% %)

t

follows the F distribution with n and m-n degrees of
freedom. (For proof see Appendix). Therefore, the
required 100(1 -ot)% simultaneous confidence region of all
the state vector parameters is:

(}"{t_x)T(I:ItTHt)il(Xt_X)SFm i ©
SSE ’

t

P

Equation 9 represents an m dimension elliptical region
where the shape of the region 13 determined by the
eigenvalue decomposition of the variance covariance
matrix (%) . This interval estimate has a resemblance to
the interval which is described by Kyriakides and Heydt
(2006) except that it is based on the weighted errors which
have the advantage to deal with the more general
structure of the error variances. Tts interpretation becomes
considerably tedious to compute when many parameters
are considered in the estimated model. It may not be
necessarily elliptically bounded in the case that the model
1s nonlinear i the unknown vector X. Because of the
complexity of the region bounded by the simultaneous
confidence interval, there also exists many other
straightforward procedures for the general linear model. A
joint interval may be found by considering the general
expression (Stapleton, 2009):

4546



J. Eng. Applied Sci., 12 (18): 4544-4550, 2017

R +vSE(R) (10)
where, % 1s a value of the 1th estimator with the standard
error SE(%) and v is a multiplier whose value is assigned
by the different methods in such a way that the desired
probability of all intervals being correct is obtained.
Among them, Bonferroni and Scheff ¢” are the common
methods due to their easier applicability in many applied
problems (Meng et al., 2010). In the (Bonferroni, 1935)
method, the value vy is set as follows:

This yield:
SE(%,) (11)

which is based on the student t-distribution. In order to
have a simultaneocus interval of the probability coverage
(1-cr) for an unknown vector of the dimension (mx1), each
mterval 15 evaluated with a 1/me level of sigmificance.
Whereas for (Scheffe, 1953) the Scheffe method, the v is
based on the F-distribution and is as given below:

r=(2n )

o, m, m—n

For more than two degree of freedom for the error, the
Bonferroni Confidence Interval (BCT) is better than
Scheffe’s method at the standard level of the confidence
(Mi and Sampson, 1993). There are also many other
methods in the joint estimation that are basically classified
in two categories ones that give the combined intervals or
corresponding hypotheses and those which are only
implemented essentially in the hypotheses testing
procedures and are commonly used in the statistical
literature. Details of these procedures can be found by
Miller (1981).

Application to the dc power system state estimation: Our
described method provides (1-¢)100% individual and
simultaneous interval estimates in the presence of
welghted observations. Its performance has been
evaluated in terms of the probability coverage. Coverage
probability is the proportion of samples in repeated
sampling that contains the true of the
corresponding parameter. The calculation of the coverage
probability through the Monte Carlo experiment is a
usually procedure for the evaluation of CT. The coverage
probability has been calculated in the presence of
heteroscedastic error terms through the Monte Carlo
experiment. In order to validate our method for both
individual and simultaneous interval estimation, we have

value

Bus1 Bus 2
775 MW
5.5 MW
s . 1055 MW
8 200MW ¢ 4 30.0MW 8,
Refbus
Bus3d

1 B
GE 10.0 MW

Fig. 1: DC load flow model for three bus system

Table 1: Available information for the given system

Frombus Tobus Power flow (pu’) Reactance (pu) Busangles(rad)
1 2 0.775 04 0.00
1 3 0.200 0.8 0.16
2 3 0.300 05 -0.15

“Pu: Per unit system representation of value in 100 base; (o )' Standard
deviation related to accuracy of measurernents of ith meter

considered simple the DC load flow network model. These
types of models are very useful for rapidly computing the
actual flow of power and m the security studies analysis
(Wood and Wollenberg, 2012). The purpose of using this
model is a non-iterative state estimation solution for the
unknown state vector and it’s resemblance to the model
that has been used by Kyrnakides and Heydt (2006) in
terms of linearity. Consider the 3-bus DC flow model as
shown in Fig. 1. Here, power flow meters of the different
accuracy standards are installed at the different locations
to measure the power m MW. Generally i a power system
problem, a state vector 1s consisted of voltage magmtudes
and the corresponding phase angles for all network nodes
except the reference bus (Monticelli, 2000). Therefore, our
state vector here, also consists of unknown phase
angles for Buses 2 and 1. Whereas, Bus 3 is taken as
a swing bus hence, its phase angle is assumed to be zero.
Before rmunning the simulation experiment on our
described results for the individual and the simultaneous
confidence intervals, we have to know the actual values
of our parameters. Henceforth, it has been further
assumed, so far, that the measuring devices are subject to
provide measurements with no random disturbances.
Therefore, for the given nformation in Table 1, the actual
values of the phase angles for Buses 1 and 2 have been
obtained as 0.16 and -0.15 in radians, respectively.

In the real situation, available measurements in the
state estimation of a power system are not actual but are
polluted with the disturbances from different sources that
are assumed to follow the Guassian density function.

For implementation purposes, it has been assumed
that the source of this uncertainty 1s contributed in the
actual measurements by the accuracy parameter of each
measuring device. The weighted least squares method has
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Table 2: Performance of the confidence intervals for the measurements of equal accuracies (o, = 0.0001, g, = 0.0001, g, = 0.0001)

Coverage probability

Parameters to Actual values Point Individual Bonferronik 000 ceeeeeceeeeeceeeeeee
be estimated of parameter estimates confidence interval confidence interval ICT BCI
< 0.1600 0.1600 (0.0716, 0.3916) (0.3042, 0.6242) 0.9466 0.9740
=3 -0.1500 -0.1499 (0.3837, 0.0838) (0.6185, 0.3185) 0.9457 0.9734

Table 3: Performance of the confidence intervals for the measurements of unequal accuracies parameters to be estimated (g, = 0.01, oy = 0.001, g; = 0.0001)

Coverage probability

Parameters to Actual values Point Individual Bonferronik 000 ceeeeeceeeeeceeeeeee
be estimated of parameter estimates confidence interval confidence interval 1CT BCIT
I5h 0.1600 0.1600 (-0.0716, 0.3916) (-0.3042, 0.6242) 0.9524 0.9759
2, -0.1500 -0.1499 (-0.3837, 0.0838) (-0.6185, 0.3185) 0.9520 0.9766

been used to estimate the unknown parameters 8, and 6,.
We have simulated the 10000 sets of measuring values z,,
z, and z; by adding errors from the assumed normal
density models; all having zero means and variances
corresponding to the accuracy parameter attached with
each meter as shown in Table 2. In this way, for each set
of simulated measurements, the mterval estimates are
calculated by expressions given in Eq. & and 11 at a
nominal level of o = 0.05%. The performance of the
mterval estimates 1s then measured by the actual coverage
probability values for 6, and 6, that are close to the
chosen nominal value as shown in Table 2.

RESULTS AND DISCUSSION

The R language (28) has been used for the
performance evaluation of these interval estimates and to
report the necessary results m Table 2 and 3. We have
also illustrated our procedure graphically up to 400 runs
that can be seen in Fig. 2 and 3. Here, each vertical line is
in correspondence to the width of an interval and the
desired parameters values are represented by the central
horizontal lines. The vertical lines that are above and
below the parametric lines are in correspondence to
intervals that have not been captured the true values of
the parameters.

The nomimal coverage regions for the individual and
the simultaneous confidence intervals are 0.950 and 0.975,
respectively, at the chosen significance level of 0.05. Tt
has been seen from the simulated results, that the
coverage probabiliies for the desired parameters in
Table 2 and 3 are not exactly equal to the nominal
confidence regions for the individual and the
simultaneous confidence mtervals.

The reason behind this 1s a hortage of redundant
ratio. In our case, it 18 1.5. For a good interval estimate,
enough numbers of the redundant measurements are
required. This approximation can be achieved closer to the
chosen level of significance provided that enough
redundancy 1s nvolved. The confidence intervals that are
listed in Table 2 and3 are the average intervals over the

0.4 4 i = 0 contained
— 03 ] 3 h kLU B g, notcontaired- -
o X T H - I
B 0.2 : .
té"’01
g1 e
0.0 4 I -
-0.1

0 100 200 300 400 500 600
Number of replications

Fig. 2: Simulation of individual C1 for 6,

ol ' = G: Contained
o 00 o 1 Thl A B g Not contained
2 -0.1 ! {
g-02
o3 WRTWEIOERRTT TPNRE T
-04 I

0 100 200 300 400 500 600
Number of replications

Fig. 3: Simulation of individual C1 for 0,

10000 simulations. The width of the BIC is larger than the
corresponding individual confidence which is not
surprising but rather a fact that is supported by the
common theoretical result. The coverage probabilities in
case of unequal weights as shown in Table 3 still
remained stable. The intervals that are described m the
referred to study camnot be implemented here because of
inclusion of the weighted measurements. But in our
described method, once all the weights that are used for
the different errors are assumed to be one, both will
provide identical results. So, one of the important
advantages of the confidence interval as described in
Eq. 8 and 11 i3 its generalization and practical
mnplementation m a power system state estimation
problem that commonly involves measurements with
different weight structures.

CONCLUSION

Kyrnakides and Heydt (2006) have implemented, the
described method for the individual and the simultaneous
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interval estimates for the state parameters of a power
system under the assumption that error variances are
constant. In this scenario, the least square method is one
of the appropriate techniques for finding the optimum
estimate of the system state parameters. This parametric
assumption is questionable in a power system state
estimation problem and looks impractical in the sense
that uncertamties are assumed to be added in the
measurements from the different sources. In our opimion,
1t 18 a very significant assumption of the state estimation
problem from the application point of view and should be
kept in consideration. In view of its mmportance, we
have described individual confidence and simultaneous
confidence intervals for an unknown state vector under
the weighted least square scenario which is more
commonly applicable to the power system state estimation
problem.
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