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Abstract: A hybrid of quasi-Newton and conjugate gradient method combines the search direction of the two
methods to produce a new algorithm for solving unconstrained optimization functions. In this study, a modified
hybrid Quasi-Newton method 1s presented where a new conjugate gradient coefficient is employed in the search
direction. Based on the numerical results, the proposed hybrid method proved to be robust in comparison to
the original quasi-Newton method and other hybrid methods.
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INTRODUCTION

The general form of an unconstraned optimization
problem is defined by:

min f(x) 1)

xeR™

where, £ R*~R 15 a continuously differentiable function
and 1ts gradient at point x, 18 denoted as g,. The iterative
method 1s often used to solve Eq. 1 and it 1s written as:

Ky = % topd, k=12 (2

The variable ¢, >0 denotes the stepsize, x, is the lkth
iterative point and d, is the search direction. The value of
., can be obtained by two ways-exact and inexact line
search. While the exact line search calculates the
optimal stepsize, it is known to be very slow and
ineffective when the initial point is far from the solution
(Sun and Yuan, 2006). On the other hand, the inexact line
search approximates the value of ¢, according to some
conditions which makes 1t faster and easier to implement.
In this study, the Armijo line search 15 used to estimate
the value of a, due to its simplicity and easy application
(Armijo, 1966). By using the Armijo conditions, the , 1s
selected where for given s=0, Be(0, 1) and oe(0, 1) we
have ¢, = max {s, sp, sp?, ...} such that:

fix,)-fx, +a,d,)2-c0, gld, k=012 3

The Quasi-Newton method 15 well known to be
highly efficient in solving small to medium scale
optimization problems. Of the known different types
of quasi-Newton method, it is generally accepted that the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is
the most efficient one (Broyden et al., 1973; Byrd and
Nocedal, 1989). For this reason, the focus of this study
will be on the BFGS method. Tts search direction is
written as:

d,=-H.g, )

where, H, 13 the positive definite nxn approximate
matrix of the Hessian of the objective function f at kth
iteration while g, 1s the gradient of f at point x,. The
update equation of the approximate Hessian matrix is as
follows:

H,,, - H, J{l . vieHyyi }Sgsg i SkYEHkT"' Hiyisic
Sk¥Ye  PkYk Sk ¥k
(5)
with s, = X, X, and y,, = g.,-g,. While it is true that BFGS
is robust when solving small scale problems, the same
carmot be said for large scale ones. For problems

mvolving large number of variables, the Conjugate
Gradient (CG) algorithm is the best method to be used.
The search direction of CG method is:

k- k=0

g - { ®)
gk tBidk-, k21
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where, P, is the CG coefficient. Some examples of B,
are Fletcher-Reeves (FR) (Fletcher and Reeves, 1964),
Conjugate Descent (CD) (Fletcher, 1987) and
Rivaie-Mustafa-Ismail-Leong (RMIL) (Rivaie et al., 2012).
Their equation are as follows:

FR _ 248, (7
kT T
18
cho_ 848y (8)
k T
di 18y
RMIL _ gz(gk _gk—l) (9)
e S oo/
didy

In a bid to improve the original BFGS method,
Tbrahim et al. (2014) combined the search direction of
BFGS with the CG method and came up with a new d,
shown by:

q, - it k=0 ao
£ -H.g, + Tl(—gk +Bd, ), 21
T
B, :% (11)
g,dy,

with 1>0. This method, dubbed the BFGS-CG method was
shown to out perform BFGS and some classical conjugate
gradient methods mn terms of munber of iterations and
CPU time. Following that, another hybrid BFGS and
CG method was proposed by Ibrahim et al. (2014) which
is referred as the HBFGS method. Its search direction is
defined by:

4 =) THeo k=0 (12)
* -H,g, +mB.d, . k=1
T
B, = %;ki (13)
g dy

where, 1>0. Based on the numerical results, the HBFGS
method proved to be more efficient than the BFGS
method. Both hybrid methods by Ibralum er af (2014)
and Hery et al. (2014) were tested under Armijo line
search.

Another known  hybrid method combines
quasi-Newton with the Steepest Descent (SD) method
which is known for its global convergence property
(Han and Newman, 2003). A hybrid of the quasi-Newton

and Gauss-Seidel method aimed at solving the
system of linear equations was presented by Ludwing
(2007), Sofl et al. (2013, 2008), Mamat et al. (2009),
Taafar et al. (2013). On the other hand, Luo et al
(2008) proposed combining the quasi-Newton method
with chaos optimization to solve the system of nonlinear
equations.

MATERIALS AND METHODS

Hybrid quasi-Newton method: In this study, a modified
hybrid Quasi-Newton method 1s proposed based on the
method studied by Ibralum et al (2014). We apply a
different CG coefficient in place of the one used by
Ibrahim et ai. (2014). The new [, is known as B, or
ARM method and 1s formulated as:

- I Y T
" mg, d, o k1
Note that:
—_ R ™

m, ( _gi-ldk-l ) m, ( _g;ldk-l )

(15)

From the Eq. 15, the ARM method can be simplified

to the Conjugate Descent (CD) method, a type of classical

CG method that has been reported to show good results

(Duet af., 2001; Yuhong and Yaxiang, 1996). We call the

resulting hybrid method the BFGS-ARM method and
implement it in the following algorithm:

Algorithm 1 (Hybrid method):

Step 1: Given an initial point x,eR", 5eR™™, set k=0

Step 2: If the stopping critcriax‘fgk”s10_6 or k=10000 is fulfilled, stop
Step 3: Compute the descent direction variable by (12) using (14) as [
Step 4: Compute a, by Armijo line search (Eq. 3)

Step 5: Compute 3. = xytogdy

Step &: Set 8, = X Xy and ¥ = e Lx

Step 7: Compute Hy,y by (5)

Step 8: Set k =k+1 and go to Step 2

RESULTS AND DISCUSSION

Convergence analysis: A convergent algorithm should
satisfy the sufficient descent and global convergence
properties. Tn order to establish the convergence of the
new CG method, we need the following assumptions of
the objective function. Assuming that every d, satisfies
the descent condition, then:

gid, <0 (16)
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Table 1: A list of test problems

Test problems Variables Initial points

Three hump 2 (6, 6) (-19, 17) (61, 61)

Six hump 2 (6, 7) (18, 18) (46, 46)

Zettl 2 (6, 6) (16, 16) (64, 64)

Dixon and price 2.4 (7, 7) (18, -19) (56, 56)

Raydan 1 2,4 7, ... 7,(2,...,12)(22,...,22)
Arwhead 2,4,10 (3,....3(23,...,23) (81, ..., 8D
Generalized tridiagonal 1 2,4, 10 (3,....3),(14, ..., 14 (70, ..., 70)
Extended quadratric penalty 2 2,4, 10 (89, ..,89(29 ..., 29 (99, .., 99
Extended beale 2,4,10,100 (-1.3,...,-13) (2, ..., 2 (-10, 10, ..., -10, 10)
Tridia 2,4, 10, 100, 500, 1000 (-7, ... D (15, ..., 15) (63, ..., 63)
Denschnb 2,4, 10, 100, 500, 1000 (5, ....5)(25,...,25) (100, ..., 100)
Extended rosenbrock 2,4, 10, 100, 500, 1000 (10,...,10) (18, ..., 18) (55, ..., 535)
Extended white and holst 2,4, 10,100, 500, 1000 (-4, 4, ..., -44(5,...,15 (-43, ..., -43)

for all k=0. For the sufficient condition to held:
2
gidk = _C"gk" a7

To prove that the BFGS-ARM algorithm satisfies the
sufficient descent property, the following assumption is
needed.

Assumption 1: The objective function f 15 twice
continuously differentiable. Tn some neighbourhood N
of 1, f (x) is continuously differentiable and its gradient is
Lipschitz continuous then, there exists a constant L=0
such that |Lg(x)-g(y)”sL|L(-y“ for all x, yeN. The level
set L. is convex. There exists positive constants ¢l and ¢2
satisfying:

c1 H2H2 <z'F (X)Z <c, Hz”2

for all zeR" and xeLL where F (x) 1s the Hessian matrix of f.

Theorem 1: Suppose that Assumption 1 holds. Let the
sequences {g,} and {d,} be generated by the algorithm
for BFGS-ARM method while the stepsize 1s determined
by using Armijo line search, then the sufficient
descent condition g, 'd.<-Clg/f holds true for all
k>0and C>0.

Theorem 2: Suppose that assumption 1 and theorem 1
hold. The sequences {g,} and {d,} are generated by the
algorithm for BFGS3-ARM method while the stepsize 1s
determined by using Armijo line search. Then:

lim|g, | = 0 (1%)

Numerical results: In this study, we discuss the
numerical results of the tests conducted on the
BFGS-ARM method in comparison to the original BFGS
method, the BFGS-CG method (Ibralum et af., 2014) and
the HBFGS method (Ibrahim et af., 2014). Under Armijo

line search, the efficiency of the four methods are
studied by using them to solve 13 test problems taken
from Ibralum et al. (2014), Jamil and Yang (2013), Andrei
(2008) at different number of variables from 2-1000.
Following the suggestion by Hilstrom (1997) for each of
the tests, the initial point begins from one close to
the mimmum pomt to one furthest away from the solution.
This 15 to test the global convergence properties and the
robustness of the proposed method. For the Armijo
condition, we define s = 1, p = 05 and 0 = 0.1. All
of the calculations involved are made by Matlab (2012)
subroutine programme via a portable PC with CPU
processor intel (R) Core (TM) i5 and 4GB RAM
memory.

The stopping criteria are set atlig,l<10™* and when the
number of iterations exceed 1000. The results are recorded
in terms of number of iterations, number of function
evaluations and CPU time. They are then analysed by use
of performance profile introduced by Dolan and More
which 1s a mean to evaluate and compare the performance
of the set of solvers S on a test set P (Dolan and
More, 2002). The lists of functions used are as displayed
inTable 1.

Assuming there are n, solvers and n, problems for
each problem p and solver s, we define t, , = computing
time or number of iterations or function evaluations
required to solve problem p by solver s.

As a baseline i1s required for comparisons, the
performance of solver s on problem p 18 compared with
the best performance by any solver on the problem by
using the performance ratio:

t

P, 8

e min{tp,s: SE S}

P, 8

Assuming that a parameter ry, =1, , for all p, s is chosen
and r, , = ry; if and only if selver s does not solve problem
p. an overall assessment of the performance of solver s
can be obtamed from:
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Fig. 2: Performance profile based on the CPU time

p.(T)= Lsize{pe P:r <’c}

s
HF

Where:

P, (1) = The probability for solver s€3 that a performance
ratio

r,, = Within a factor teR of the best possible ratio

Function p, 1s the cumulative distribution function for
the performance ratio. The performance profile p,; R—[0, 1]
for a solver is a nondecreasing, piecewise constant
function which 1s continuous from the right. The value of
P, (1) 1s the probability of a solver winmng over the rest.
Thus, it can also be said that the solver with highest value
of p, (1) or located at the top right of the figure represents
the best solver.

The following three figures show the performance of
the four tested solvers based on number of iterations in
Fig. 1, CPU time in Fig. 2 and number of function
evaluations in Fig. 3. The left side of the figure determines
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Fig. 3: Performance profile based on the number of
function evaluations

the percentage of the test problems for which a solver is
the fastest while the right side indicates the percentage of
the test problems that are successfully solved by each
solver.

Based on the results, both BFGS and BFGS-CG have
the lowest percentage of test problems solved which is at
96.97% followed by HBFGS at 98.48%. This leaves the
BFGS-ARM method with the lnghest number of problems
solved at 99.24%.

CONCLUSION

This study proposes a modification on the hybrid
BFGS and CG method by ntroducing an altemative choice
of P, referred here as the ARM method. The resulting
algorithm 1s called the BFGS-ARM method. The efficiency
of this solver is compared to the original BFGS method,
the BFGS-CG method and the HBFGS method with the
latter two both being hybrid quasi-newton and conjugate
gradient method. Based on the results of the numerical
tests, the new hybrid method is shown to be more
efficient than the original BFGS and other hybrid
quasi-Newton methods.
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