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Abstract: This study presents the meshless Point Interpolation Method (PTM) formulation to solve kinematic
wave equation for flood routing. It details on Galerkin residual method employing PIM shape functions in
discretizing the unsteady partial differential equation. Two nonlinear solvers are considered; Picard and
Newton-Raphson. The formulation are verified against both hypothetical data obtained from conventional
numerical methods (finite difference and finite element method) and gauged data obtained from an actual river.
Close agreements are obtamed between the proposed PIM formulation and the conventional methods thus
highlight the potential of PIM as an alternative numerical method in the field of hydrologic modelling.
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INTRODUCTION

The hydrologic phenomenon of surface runoff and
charmnel flow can be approximately predicted by solving
a set of one-dimensional nonlinear unsteady partial
differential equations known as St. Venant equations. The
equations consist of continuity and momentum equations
which can be further classified into full dynamics,
diffusive and kinematic wave equations. Full dynamics
equations allow for complete description of the flow,
whilst diffusive equations able to capture backwater
effect. If the slope of the plane is assumed to be equal to
the frictional slope, the continuity equation and the
momentum equation can be uncoupled and hence the
prevalence of the kinematic wave equation.

Due to its smmplicity, kinematic wave has been
conveniently applied in wvarious hydrologic modelling
such as watershed runoff, flood routing in rivers, channel
flows, erosion and sediment transports (Singh, 2003).
However, despite being the sunplest case of St. Venant
equations there 1s no closed form solution available for
the kinematic wave except for the very simplified cases as
worked by Hjelmfelt (1981), Parlange ez al (1981) and
Govindaraju ef al. (1988, 1990). The difficulty is due to the
nonlmearity as well as the unsteady nature of the
equation. Therefore, at present in obtaining the solution
for the more general cases, kinematic wave equation is

commonly solved numerically using Fimte Difference
Method (FDM) (Chow et al., 1988) or finite element
method as by Vieux et al. (1990) and Litrico et al. (2010).

MATERIALS AND METHODS

Point Interpolation Method (PTM): A meshless method:
Meshless methods can be considered as the latest output
inthe research and development of numerical techmques.
The discoveries were motivated by the attempt to remove
the need for predefined meshes of FEM. It is argued that
with the removal of the mesh, computer cost in the Mesh
development as well as in mesh refinement can be
reduced. Since, there could be various ways in doing this,
meshless methods do not refer to a specific method but to
a family of methods. Point Interpolation Method (PIM) 15
one that falls under this family.

PIM uses polynomial functions as the basis for the
derivation of the shape functions. This differs from other
Meshless methods such as Radial Pomt Interpolation
Method (RPIM) that uses radial basis functions and
Element Free Galerkin (EFG) that uses moving least square
functions, just to name a few. The method was first
proposed by Liu and Gu (1999) before enhanced by
Liu and Gu (2003, 2004) and Liu et al. (2004).

Despite the various works and formulations of FDM
and FEM on kinematic wave equation there is yet a PTM
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formulation for the problem. Such an undertake is thus,
umportant as, not only 1t can provide alternative numerical
method in the field of flood routing but also assist in the
establishment of Meshless methods within the field of
civil engineering by widening the application of the
methods mto hydrology and river engineering. It 1s
therefore the mam interest of thus study to present the
formulation of PIM meshless method and its verification
to flood routing problems based on kmematic wave
assumption.

Governing equations: Saint Venant equations are time
dependent partial differential equations which describe
the distribution of flow rate, Q and flow cross-sectional
area, A as functions of distance, x along the channel and
time t The equations were first derived by Barre de
Saint-Venant in 1871 (Vieux et al., 1990). The equations
were derived by considering the two conservation laws
which are the conservation of mass and the conservation
of momentum. The final forms of the partial differential
equations are given as follows.

Equation of mass:

dA aQ (1)
il B, g
e malx)

Where:

A = The cross-sectional area of the flow

Q = The flow rate
q (x) = The forcing term (1.e., precipitation, lateral flow)

Equation of momentum:

2
%%Q X&[Q }Jrg%fg(snfsf):o (2)
Where:
S = The bed slope
Se = The frictional slope
vandg = The depth of water and gravitational pull,
respectively

The complete form of Eq. 2 1s termed as full dynamics
equation. If the first two terms on the left hand side of the
equation are omitted, we then obtain diffusive
equation.

However, Eq. 2 can be further simplified if it is
assumed that 3, = S; This 1s known as the kinematics
wave assumption. This condition can be equivalently

treated in Manmng form as:

A =adf 3)

Equation 1 and 3 are the Saint Venant kinematic wave
equations. By combining Eq. 1 and 3, the following
equation can be obtamed:

9Q, 1 g 9Q _ ()
o opt o O

Weak form of kinematic wave: The kinematic wave
equation given as Hq. 4 can be solved numerically by
converting the equation into weak form. This can be done
by employing Galerkin weighted residual method. We first
discretize Eq. 4 n time by forward-difference to obtain:

Qﬁl Q [1-B).t+1 aQ t+1 (5)
At aBQ ax &

where, t+1 and t refers to present and previous time-step,
respectively. Rearranging gives:

QHI At Q J1+L dQ !

ol (6)
ap 0% “Qtma

By weighting Eq. 6 by shape functions, and
expressing the flow rate as where are the degree of
freedoms or the nodal values of the following is obtained:

N;Q
ox

Jx {N Q gl ]—NijJdX‘L Nigdx
7
To note, in Eq. 7, superscript t+1 is omitted for ease
of notation. By collecting the degree of freedems, () and
shifting known terms to the right hand side of Eq. 7 can
now be given as:

(J'L NNt [ 2—;

_g ON.
Nl(Nka)(l " axjdx]

(8)
Q, = [ NNQdx+] Nigdx
In mdicial notation, Eq. 8 can be represented as:
(M, +K,)Q, = —F ()
or in matrix form as:
[M+R(Q) [{Q] =~ {F} (10)

Where:

K or [K] = The stiffness matrix

M; or [M] = The mass matrix whilst Q, or {Q}

F, or {F} = The vector of degree of freedom and load,
respectively
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Each can be given as:
[M] =M, = [ NN dx (1)

At aN.
= .= — N. — 1 (12)
[K(Q)] =K, LGBNI(NKQK)(l B —dx

{F}=F = [ N,N,Qjdx+[ N, qdx (13)

Nonlinear solvers: Equation 9 and 10 1s nonlinear thus
requires nonlinear solvers. In this research, two nonlinear
solvers have been employed then verified; Picard’s and
Newton-Raphson scheme. Each of the scheme is detailed
next.

Picard’s scheme: Picard scheme is also known as the
direct substitution iteration method. Tt is called direct
because the scheme involves direct substitution of mitial
(or previous) solved degree of freedoms 1nto the stiffness
matrix in solving the current ones and this process is
iterated until the solution 18 converged. But such
sunplicity usually works only for mild nonlinear problems
but diverges for severe nonlinearity.

Newton-Raphson’s scheme: An alternative iterative
scheme which performs better when the nonlinearity is
more severe is the Newton-Raphson scheme. The basic
concept of the scheme is based on the Taylor series
expansion. The residual of the equilibrium equations can
be given as:

{R(Q)}=[M+K(Q) [{Q]-{F] (14)

Expanding Eq. 14 by Taylor series about the known
(r-1)" solution gives:

a{r(Q)7} 15

R o Hagt -0

where, the series has been truncated up to linear terms
only. Rearranging gives:

o[R(Q)”]
{a{Q}H Hagp=[ri@7) 1

By defining a new matrix, termed as tangent stiffness
matrix, [T (Q)]:

o R an
T =

Equation 17 can be compactly given as:

[T(Q)H }{AQ} =-{R(Q)] (18)

Examimng Eq. 18, one can observe that {AQ} 1s now
solvable since the other terms, i.e. [T (Q)¥ '] and [T (Q)]
are now known from the previous iteration, i.e. (R-1)™ By
inversing [T (Q)"'], {AQ} is thus obtained as:

y=[rie ] (Hr@f) 09

Once {AQ? 1s solved, the solution at the rth iteration
is updated thus:

{Qf ={a} " +{aq} (20)

In the next iteration, {Q}" of Eq. 20 1s inserted back
into Eq. 19 and take the role of {Q}" in the determination
of [T (Qy "] and {R (Q¥'}. This process is repeated until
the solution converges.

Point Interpolation Method (PTM): The main difference
between FEM and Meshfree formulation 1z m the
derivation of the shape function. To the knowledge of this
study, no work on Meshfree formulation employing PIM
shape functions in solving kinematic wave has ever been
reported.

Point Interpolation Method (PTM) shape functions: PTM
shape functions use polynomial as the interpolation
functions. Consider a distribution of flow arte Q(x) in a
one dimensional flow region discretized by a set field
nodes. Interpolation of Q(x) by polynomial can be
represented as:

Q={PHa}" =P,a, @)
Where:
{P? = The monomials built from Pascal triangle
m = The number of the polynomial terms
fat = The vector of coefficient which both having the
size of 1 xm

{P} and {a} are given as:

{P} =P, = {1,X,X2,...,X""1} (22)

fa) =8, = [a,8,8500,) (23)
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The coefficient a,, in Eq. 23 can be determined by
enforcing the functions to go precisely through the nodal
values of the n nodes. In matrix forms this equation can be
written as:

fQ) =[PLJfa) 4
Where:
{Q} = The vector of the nodal values of the flow rate (or
also known as the vector of degree of freedom)
[P.] = Contains the evaluated values of the monomials
when evaluated at the location of the nodes
(1.e., x,) which can be given as:

2 m—1
1 x x/.. X

2 m—1
1 x, x5.. X}

2 m—1
1 x, X5.. X,

[PL]= (25)

[Pl] 15 called the moment matrix. As can be noticed in
Eq. 24 18 a constant matrix. From Eq. 24 by inversing the
moment matrix [P|], we can solve for {a}. This is given as:

fal =[PLI{QF 26)
By inserting Eq. 26 back into Eq. 24 we obtain:

Q={p}lpLI" Q) @7

Equation 27 can then be expressed as:
Q={NHa} = N,Q, (28)

where, {N} or N, are the PIM shape functions hence, its
derivation. The shape fimctions can be shown to have the
Kronecker delta property as follows:

j=m (29)
j=m (30)

Due to this property, the essential boundary
conditions can be easily imposed mn PIM.

Evaluated values of PTIM shape functions: Derivation of
PIM shape functions given above is based on the direct
inversicn of the moment matrix [P|,] (i.e. [P|,]"). However,
this 13 not the practice of many Meshfree formulations.

Instead, the coefficients {a} are solved by Gauss
elimination which 1s made possible by evaluating both the
polynomial interpolation (i.e., Eqg. 21) and the shape
function interpolation (1.e., Eq. 28 ) at a pomt of interest
(ie., Gauss points) and then equating them. This is
detailed as follows.

Since Eq. 21 and 27 represent the same distribution of
the flow rate, the equations should give the same value
when evaluated at the same location (ie., point of
interest). This gives:

N HQY = (Pl Hal (31)

where, subscript p; means point of interest. Tnserting
Eq. 24 gives:

INLIPLNa} ={P|.}{a} (32)

After cancellation of {al}T and some rearrangement,
Eq. 32 can be given as:

[PLINLY ={pL) (33)

By solving 1n Eq. 33, the shape functions at a point
of interest can be obtained by employing simultaneous
equation solver such as Gauss elimination thus avoid the
need for direct inversion.

First derivative of PIM shape functions: As can be seen
in Eq. 4, the kanematic wave equation has first derivative
term. Derivative of the PIM shape functions is determined
as follows.

Differentiating Eq. 28 and 21 and evaluating at a point
of mterest, we obtain:

Q
ON | AN, N, | [ ]Q|
ax |y ox |, T ax ||| -
&y
fo1, (n-1)x ]
aﬂ
which can be compactly given as:
fon L e {opl, Hat (35)
Where:
{on), )= My N N, (36)
i ax | ox |, x|,
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{oplf={on . (n-1)x"} (37)
Tnserting Eq. 24 into Eq. 35 gives:
[N P LIe} = {opL}{e) %)
Cancelling {a}’ and some rearranging, we obtain:
[Pl {ong, ) = {op ) (39)

Solving for {IN|;}, we obtain the evaluated values of
the derivative of the PIM shape functions at the location
of the point of interest.

Final form of kinematic wave PTM formulation: Tnserting
{N|:} of Eq. 33 and {IN|,} of Eq. 39 into the descritized
weak formulation of Eq. 11-13, the final form of PIM
formulation of the kinematic wave can be given as
(in numerical integration forms):

BC GP
[M] =M, ;2ng1 N LT | (40)
— &
EC GF . Af (1-8) aN ‘
[K]:Ku:ggwga—BNig(Nk\ng\g) 1|
(41)
BC GFP

{F} =E= EEWE |:Ni e Ny e Q+ N g q:| R (“42)

f=1g=1

At
BC GPF N; |g N; |g Jr(z_B)O‘TBI\II‘g

Tl=T. =
[T] =1 ZZW e BN, | I
(N Q) —=¢
ke =kl ax

(43)
Where:
|[T{ = The Tacobian for fth background cell
w, = The Gauss weighting factor for the gth Gauss point
GP = The total number of gauss points
BC = The background cell of the gauss quadrature

RESULTS AND DISCUSSION

Verifications of formulation

Case 1: Verification against Chow & al. (1988): The first
verification 1s made agamst the numerical solution
obtained from FDM of Chow et al. (1988). The flow is
driven by a time-varying inflow as given in Table 1. The
hypothetical channel discretized into a finite grid system

Table 1: Chow et . (1988) input data

Intlow time (min) (1) Intlow rate (cf¥) (2
0 2000
12 2000
24 3000
36 4000
48 5000
60 6000
72 5000
84 4000
26 3000
108 2000
120 2000
15000
15090

30.00 ft 6000 £t 9000 £t 12000

1%

Fig. 1: Uniformly distributed discretization points along
the charmmel (Chow et al., 1988)

1s shown in Fig. 1. The channel has a bed slope of one
percent and a Manning’s roughness factor of 0.035. There
is no lateral inflow (precipitation). The initial condition is
a uniform flow of 2000 cfs along the channel.

Two spatial points have been chosen for comparison
purposes; 6000 and 12000 ft measured from upstream. The
plots of flow rate, Q versus time, t are shown in Fig. 2-5
for various node refinement and for the two nonlinear
schemes. The close agreement between the results
verifies the PIM formulations.

Case 2: Verification against Vieux ef al. (1990): In
Case 1, precipitation or ramfall is not considered. To allow
for such a forcing term, verification 1s made against results
detailed by Vieux et al. (1990). Also, whilst Chow et al.
(1988) employed FDM, Vieux et ol (1990). Employed FEM
as the numerical method. Figure 6 shows the hypothetical
watershed considered by Vieux et al. (1990). In contrast to
Case 1 and as can be seen in Fig. 6, varying slope is
allowed where the upper plane has a slope of 6% whilst
the lower plane has a slope of 3%. At midpomt point
where planes with different slope intersected, averaged
value of the slopes, 1.e., 4.5%. The length of the plane is
200 ft. The flow 1s subjected to a constant intensity
precipitation (rainfall) with an mntensity of 1.097 cm/h
(0.00001 ft/sec). The Maming roughness coefficient 1s
taken as 0.035 at each node. Various numbers of elements
was considered for convergence study purposes (ie., 2,
20 and 50 elements).
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Fig. 22 Flow rate at point 6000 ft obtained by
Newton-Raphson PIM; Newton PIM at node
6000 ft
6500
6000 |
5500

——— 3Node
5 Node

Flow rate (cfs)

3500 ¢ 9 Node

3000 — 13Node

2500 | ——— 21 Node
— 41 Node

Zﬁ — Chowetal. (1988)

15( L L

0 50 100 150

Time (min)

Fig. 3: Flow rate at pomt 12000 ft obtamed by
Newton-Raphson PIM; Newton PIM at node

12000 ft
6500 T 3Node
6000 - 5 Node
5500 | s 9 Node
——— 13 Node
—~ 5000}
£ . — 21Node
g 4800¢ . — 41 Node
S 4000 % — Chow (1988)|
[=] L
2 3500

0 50 100 150
Time (min)

Fig. 4: Flow rate at point 6000 ft obtained by Picard PTM;
Newton PIM at node 6000 ft

Figure 7-9 show the plot of discharge (flow rate)
calculated using Newton-Raphson iterative scheme and
Picard scheme,
agreement between the results, 1t can be concluded that
PIM formulation has been verified for the case of flow
driven by precipitation.

respectively. Based on the close

Flow rate (cfs)

Chow (1988)

0 50 100 150
Time (min)

Fig. 5. Flow rate at point 12000 ft obtained by Picard PTM,
Newton PIM at node 12000 ft

Outflow
6%

3%

|<— 30.48 M. i 30.48 M. i

2-Element system

S=6% S=4.5% S=3%
20-Element system
I Snodess=6% | (J I" 5 nodes S = 3%

1 node S =4.5%

50-Element system

[ 25 nodes S = 6% I# 25nodess=3% |

1 nodes S =4.5%

Fig. 6: One-dimensional element representation of two
plane watershed; Vieux et al. (1990)

Case 3: Verification against gauged (real) data
Litrico et al. (2010): In contrast to the two previous
hypothetical works, Litrico et al. (2010) dealt with real
data, gauged from Jacui River in Brazil. The flow was
driven by time-varying upstream boundary conditions
(varying inflow) as shown in Fig. 10. The data consisted
of propagation of dam release on the Jacui River in Brazil
between Itauba and Volta Grande, recorded at a time step
of 30 min. Table 2 gives the data for the river.

Figure 11 and 12 show the plot of discharge (flow
rate) calculated using Newton-Raphson iterative scheme
and Picard scheme, respectively. Close approximations are
evident between the plots hence the validation of the
formulation and the corresponding source code.
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[=

—— Newton nolinear PIM
— Vieux

a f L L L L L L L L

0 100 200 300 400 500 600 700 800 900 1000
Time (sec)

Fig. 7. Flow rate of PIM Newton-Raphson versus

Vieux et al. (1990); Sollution comparison for
51 node

x10*

Flow rate (m*/sec)
=

—— Newton nolinear PIM
— Vieux
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. \ , | , . \ , ,
0 100 200 300 400 50U 6UU /00 BUU YUU 1000
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Fig. 8 Flow rate of PIM Picard versus Vieux et al. (1990,
Sollution comparison for 51 node

600
3 500
E 400
)
g 300
<=
2
A 200
100 T T T T T T T T T T —1
0 5 10 15 20 25 30 35 40 45 50
Time (h)
Fig. 9: Upstream flow; Litrico et al. (2010)
Table 2: Parameter of the study by Litrico et a. (2010)
Parameters Values
Channel Length (L) 29600 m
Width (W) 55.6m
Manning coefficient (n) 0.07
Slope (8b) 0.00089

450
—— PIM (Newton)
A
0 —— Measured
350 —— Saint-Venant

300+
250
2001
1501
100f
50
0

Discharge (m*/sec)

10 15 20 25 30 35 40 45 %0
Time (h)

0 5

Fig. 10:PIM  Newton-Raphson versus gauged and
predicted data by Litrico et al. (2010)

450 " T " "
—— PIM (Newton)

400 —— Measured

350 f— Saint-Venant

Discharge (m*/sec)

15 20 25 30 35 40 45 50
Time (h)

oL .
0 5 10

Fig. 11: PIM picard versus gauged and predicted data by
Litrico et al. (2010)

CONCLUSION

This study has derived the PIM formulations for
kinematic wave equation for flood routing. It provides
detailed derivation of the weak statement of the problem
as well as the derivation of the PIM shape functions and
their first derivative. The final form of the formulation is
thus given in numerical integration form as it suits the
numerical nature of the PIM shape functions which are
given only at the point of interest which in this case,
taken at Gauss quadrature points. In the formulations,
both nonlinear schemes are considered, Picard and
Newton-Raphson. The formulation are venified agamst
both hypothetical data obtamed from conventional
numerical methods (finite difference method and fimte
element method) and gauged data obtained from an actual
river. Close agreements are obtained between the
proposed PIM  formulation and the conventional
methods thus highlight the potential of PIM as an
alternative numerical method in the field of hydrologic
modelling.
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