The Properties of Fuzzy Green Relations on Bilinear Form Semigroups

Karyati
Department of Mathematics Education, Yogyakarta State University, Yogyakarta, Indonesia

Abstract

The Green relations on semigroups have been introduced by Howie. They are right Green relation R, left Green relation L and (two sided) Green relation I. The right Green relation R is defined as $\left\{(x, y) \in S \times S \mid(y)_{R}\right\}$ with $\langle\mathrm{x}\rangle_{\mathrm{R}}$ denotes the right ideal generated by an element x (or called the principle right ideal generated by x . The definition of the left Green relation L and the Green relation I are similar to the definition of the right Green relation. In this study, we will construct the definition of the fuzzy right Green relation (denoted by R^{F}), the fuzzy left Green relation (denoted by L^{F}) and the fuzzy Green relation (denoted by I^{F}) on a semigroup. First we define a fuzzy ideal (right/left) generated by a fuzzy subset (a fuzzy principle ideal) on a semigroup and their examples. Based on, the fuzzy principle ideal definition, we define a fuzzy (right/left) Green relation on a semigroup. The fuzzy subset μ and ρ are fuzzy (right/left) Green related if and only if the fuzzy (right/left) ideal generated by μ is equal to the fuzzy (right/left) ideal generated by ρ.

Key words: Green relation, fuzzy ideal, fuzzy pricipal ideal, fuzzy Green relation, validity, element x, definition

INTRODUCTION

A non empty subset I of a semigroup S is called a right (left) ideal if $\mathrm{IS} \subseteq \mathrm{I}$ ($\mathrm{IS} \subseteq \mathrm{I}$) and an ideal (two sided) if I is both a right ideal and a left ideal. The right (left) generated by $x \in S$ is denoted by $\langle x\rangle_{\mathrm{F}}\left(\langle\mathrm{x}\rangle_{\mathrm{L}}\right)$ and an ideal generated by $x \in S$ is denoted by $\langle x\rangle$. The Green relation on a semigroup has been introduced by Howie (1976). They are right Green relation (R), the left Green relation (L) and the Green relation (I). The Green relation R, L, I are equivalence relations, defined as follow:

$$
\begin{aligned}
& R=\left\{(x, y) \in S \times S \mid\langle x\rangle_{R}=\langle y\rangle_{R}\right\} \\
& L=\left\{(x, y) \in S \times S \mid\langle x\rangle_{L}=\langle y\rangle_{L}\right\} \\
& I=\{(x, y) \in S \times S \mid\langle x\rangle=\langle y\rangle\}
\end{aligned}
$$

Some studies related to the fuzzy ideal of semigroups, the fuzzy ideal of semigroups generated by a fuzzy singleton and their properties have been introduced by Karyati (2002). In this study we will discuss how to define the fuzzy Green relations on a semigroup based on the fuzzy (right/left) ideal generated by a fuzzy subset of this semigroup.

MATERIALS AND METHODS

Fuzzy Green relations on semigroup: Asaad (1991), Kandasamy (2003), Malik and Mordeson (1998), a fuzzy subsemigroup μ of a semigroup S is defined as a mapping
from S into the interval $(0,1)$, i.e., $\mu: S \rightarrow(0,1)$ which fulfils the condition $\mu(x y) \geq \min \{\mu(x), \mu(y)\}$ for all $x, y \in S$. A fuzzy subset μ is called a fuzzy right (fuzzy left) ideal of S, if for every $x, y \in S$ then $\mu(x y) \geq \mu(x)(\mu(x y) \geq \mu(x))$ and μ is called fuzzy ideal of S if μ is both a fuzzy right ideal and a fuzzy left ideal, i.e., $\mu(x y) \geq \max \{\mu(x), \mu(y)\}$ for all $x, y \in S$. Fuzzy subsets λ and μ are called $\lambda \subset \mu$ if and only if $\lambda(x) \leq \mu(x)$ for every $x, y \in S$. A fuzzy relation θ of S is defined as a mapping from $\mathrm{S} \times \mathrm{S}$ into the closed interval $(0,1)$.

Definition 2.1: Let S be a semigroup and μ be a fuzzy relation on S. Then, A fuzzy relation μ on S is said to be reflexive if $\mu(x, x)=1$ for all $x \in S$. A fuzzy relation μ on S is said to be symmetric if $\mu(x, y)=\mu(x, y)$ for all $x, y \in S$. If $\mu_{1}=\mu_{2}$ are two relations on S, then their max-product composition denoted by $\mu_{1}{ }^{\circ} \mu_{2}$ is defined as Aktas (2004), Kuroki (1992) and Murali (1989):

$$
\mu_{1} \circ \mu_{2}(x, y)=\max _{z \in S}\left\{\mu_{1}(x, z), \mu_{2}(z, y)\right\}
$$

If $\mu_{1}=\mu_{2}=\mu$ and $\mu \circ \mu \leq \mu$, then the fuzzy relation μ is called transitive. Aktas (2004), Kuroki (1992) and Murali (1989), we give some kinds of relations defined as follow.

Definition 2.2: A fuzzy relation μ on a semigroup S is called a similarity relation if μ is reflexive, symmetric and transitive (Aktas, 2004; Kuroki, 1992).

Definition 2.3: Let S be a semigroup. A fuzzy relation μ on S is called fuzzy left (right) compatible if and only if
$\mu(x, y) \leq \mu(x$, ly $)$ for all $x, y, l \in S(\mu(x, y)) \leq \mu(x t, y t)$ for all $x, y, t \in S)$ (Aktas, 2004; Kuroki, 1992; Murali, 1989).

Definition 2.4: A fuzzy relation μ on a semigroup S is called fuzzy compatible if and only if $\min \{\mu(a, b)$, $\mu(\mathrm{c}, \mathrm{d})\} \leq \mu(\mathrm{ac}, \mathrm{bd})$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{S}$ (Aktas, 2004; Kuroki, 1992; Murali, 1989).

Definition 2.5: A fuzzy compatible relation μ on a semigroup S is called a fuzzy congruence. Karyati (2002), Mary (2011), Rajendran and Nambooripad (2000), Green (right/left) relations on a semigroup are defined as follow (Aktas, 2004; Kuroki, 1992).

Definition 2.6: Let S be a semigroup and S^{1} be a monoid generated by S . For element a and b of S , the Green (right/left) relations are defined by Karyati (2002), Mary (2011), Rajendran and Nambooripad (2000):

- $\quad a$ and b are R_related, denoted by $a R b$, if and only if $S^{1} \mathrm{a}=\mathrm{S}^{1} \mathrm{~b}$
- $\quad a$ and b are L_related, denoted by $a L b$, if and only if $a S^{1}=b S^{1}$
- $\quad a$ and b are I_related, denoted by $a I b$, if and only if aRb and aLb

In other word, a and b are R_related (L_related/I_related), if they generate the same right (left/two sided) ideal. Let S be a semigroup then, we can construct infinite fuzzy subsets of S . Let α be a fuzzy subset of S. There are some fuzzy ideals of S, denoted by $\mathrm{R}_{\alpha}{ }^{\mathrm{F}}$ having a property $\beta_{1} \supseteq \alpha$. We collect all of fuzzy ideals with this property and we define a set as follow.

Definition 2.7: Let α be a fuzzy subset of a semigroup S . A set of all fuzzy right ideal of S containing α, a fuzzy subset of S, denoted by $R_{\alpha}{ }^{F}$ is defined as:

$$
\mathrm{R}_{\alpha}^{\mathrm{F}}=\{\beta \mid \beta \text { is fuzzy right ideal of } \mathrm{S} \text { with } \beta \supseteq \alpha\}
$$

Defining a fuzzy left ideal containing α, a fuzzy subset S , denoted by $\mathrm{L}_{\alpha}{ }^{\mathrm{F}}$ and defining a fuzzy ideal (two sided) containing α, a fuzzy subset of S, denoted by $I_{\alpha}{ }^{\mathrm{F}}$ are similar to $\mathrm{R}_{\alpha}{ }^{\mathrm{F}}$.

Example 2.8: Let S be a set, i.e., $S=\{a, b, c, d, e\}$. The set S is a semigroup with respect to a binary operation number defined as the following Cayley (Table 1). The following function is a fuzzy subset of S :

$$
\alpha(x)=\left\{\begin{array}{l}
0.5, x=a, b, c \\
0.25 x=d, e
\end{array}\right.
$$

\#	a	b	c	d	e
a	a	a	a	a	a
b	a	a	a	b	c
c	a	b	c	a	a
d	a	a	a	d	e
e	a	d	e	a	a

The fuzzy ideals containing the fuzzy subset α are given as follow:

$$
\beta_{\mathrm{i}}(\mathrm{x})=\left\{\begin{array}{c}
\gamma_{\mathrm{i}}, \mathrm{x}=\mathrm{a} \\
0.5+\Delta_{\mathrm{i}}, \mathrm{x}=\mathrm{b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}
\end{array}\right.
$$

with $0.5+\Delta_{i} \leq r_{i} \leq 1$ and $0 \leq \Delta_{i} \leq 0.5$. Based on the definition of β_{i}, we can prove that every β_{i} contains α. Furthermore, we have the following example.

Example 2.9: Based on the example 2.8, we can construct another fuzzy subset of S . One of them is given as follow:

$$
\alpha^{\prime}=\left\{\begin{array}{c}
0.5, x=a \\
0, x=b, c, d, e
\end{array}\right.
$$

Generally, we can construct fuzzy ideals of S containing α^{\prime} as follow:

$$
\delta_{j}(x)=\left\{\begin{array}{c}
s_{j}, x=a \\
0.5+\varepsilon_{j}, x=b, c, d, e
\end{array}\right.
$$

with $0.5+\varepsilon_{\mathrm{j}}, \leq \mathrm{s}_{\mathrm{j}} \leq 1$ and $0 \leq \varepsilon_{\mathrm{j}} \leq 0.5$.
Definition 2.10: Let S be a semigroup and α be a fuzzy subset of S . A fuzzy subset $\rho=\langle\alpha\rangle_{\mathrm{R}}{ }^{\mathrm{F}}$, if:

$$
\begin{gather*}
\rho \in \mathrm{R}_{\alpha}^{\mathrm{F}} \tag{1}\\
\rho \subseteq \beta, \forall \beta \in \mathrm{R}_{\alpha}^{\mathrm{F}} \tag{2}
\end{gather*}
$$

Defining a fuzzy (left) ideal generated by α, denoted by $\langle\alpha\rangle_{\mathrm{L}}^{\mathrm{F}}\left(\langle\alpha\rangle^{\mathrm{F}}\right)$ are similar with how we define a fuzzy right ideal generated by α.

Example 2.11: Let ρ be a fuzzy right ideal of a semigroup S' with $\rho(\mathrm{x})=0.5$ for all $\mathrm{x}=\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e and ρ be the fuzzy subset α as the Example 2.8. We can prove that $\rho \supset \alpha$ so $\rho \in \mathrm{R}_{\alpha}{ }^{\mathrm{F}}$. For every fuzzy right ideal contains α then:

$$
\beta_{\mathrm{i}}(\mathrm{x})=\left\{\begin{array}{c}
\gamma_{\mathrm{i}}, \mathrm{x}=\mathrm{a} \\
0.5+\Delta_{\mathrm{i}}, \mathrm{x}=\mathrm{b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}
\end{array}\right.
$$

with $0.5+\Delta_{i} \leq \mathrm{r}_{\mathrm{i}} \leq 1$ and $0 \leq \Delta_{i} \leq 0.5, \rho \subseteq \beta_{\mathrm{i}}$. The following theorem gives one of the properties of the fuzzy (right/left) ideal generated by α, a fuzzy subset of a semigroup.

Theorem 2.12: Let S be a semigroup, α be a fuzzy subset of S and β_{i} be a fuzzy right ideal of S such that $\beta_{i} \supseteq \alpha$ for every $i \in N$. If, we define a mapping from S into $(0,1)$, i.e.,
 fuzzy right ideal generated by α.

Proof: Let $x, y \in S$ such that $x=y$. So, we have
 get $0 \leq \beta_{i}(x) \leq 1$ for every $I \in N$. Then, we have $0 \leq \inf$ $\left\{\beta_{i}(x)\right\} \leq 1$ or $0 \leq \wedge_{\beta_{B \in R_{B}} \beta_{i}} \leq 1$. Hence, the mapping $\wedge_{\beta_{B \in R_{\alpha}} \beta_{i}}$ is the fuzzy subset of S.

Since, β_{i} is a fuzzy right ideal so, we have
 $\hat{\beta}_{\beta_{\in} \in \mathbb{R}_{\mathrm{E}}} \beta_{i}$ is a fuzzy right ideal of S . Since, $\beta_{i} \in \mathrm{R}^{\mathrm{F}}{ }_{\alpha}$ for every $i \in N$, so we get $\alpha \subseteq \beta_{i}$ for $i \in N$. Then, we have $\alpha(x) \leq \beta_{i}(x)$ for every $i \in N$ and $x \in S$. Finally, we have $\alpha(x) \leq \beta_{i}(x)$ or $\alpha \subseteq \wedge_{\text {RGR }} \beta_{\mathrm{i}}$.

For the other cases, i.e., when α be a fuzzy subset of S and β_{i} be a fuzzy left (two sided) ideal of S such that $\beta_{\mathrm{i}} \supseteq \alpha$ for every $i \in \mathrm{~N}$, if we define a mapping from S into $(0,1) \wedge_{\beta_{i} \in R_{X}^{R}} \beta_{i}: S \rightarrow(0,1)$ with $\wedge_{\hat{B A}_{\in R}^{R}} \beta_{i}(x)=\inf \left\{\beta_{i}(x)\right\}$ then $\wedge_{\beta_{i} \in R_{X}^{R}} \beta_{i}$ is a fuzzy left (two sided) ideal generated by α.

If γ is an arbitrary fuzzy right ideal of a semigroup S generaterd by α, a fuzzy subset of S, then we guarantee γ is equal to $\wedge_{\beta_{s} \in R_{\alpha}^{\beta}} \beta_{i}$. This property is given ini the following theorem.

Theorem 2.13: Let S be a semigroup, α be a fuzzy subset of S and β_{i} be a fuzzy right ideal of S such that $B_{i} \supseteq \alpha$ for every $i \in N$. If γ is a fuzzy right ideal of S generated by α, then $\wedge_{\beta_{B} \in R_{\mathbb{R}}} \beta_{i}=\gamma$.

Proof: Since, γ is a fuzzy right ideal of S generated by α,
 Hence, we have $\wedge_{\beta_{\in} \in R_{R}^{R}} \beta_{i} \subseteq \gamma$. Since, $\wedge_{\beta_{G \in E} \in R_{i}} \beta_{i} \subseteq \gamma$ so, we have $\gamma \in \beta_{i}$ for every $\beta_{i} \epsilon\langle\alpha\rangle_{R}^{F}$. Finally, we have $\gamma \subseteq \wedge_{\beta_{G} \in \mathbb{R}_{\mathrm{K}}} \beta_{i}$

Similar to Theorem 2.13, let S be a semigroup, α be a fuzzy subset of S and β_{i} be a fuzzy left (two sided) ideal of S generated by α, then $\wedge_{\beta_{B} \in R_{\alpha}^{R}} \beta_{i}=\gamma$.

Definition 2.14: Let S be a semigroup and $F(S)$ be the family of all fuzzy subset of S. For every $\mu, \rho \subset F(S)$, a mapping $\mathrm{R}^{\mathrm{F}}(\mu, \rho)$ from $\mathrm{F}(\mathrm{S}) \times \mathrm{F}(\mathrm{S})$ into the closed interval $(0,1)$ is defined as:

$$
\mathrm{R}^{\mathrm{F}}(\mu, \rho)=\left\{\begin{array}{l}
1,\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}}=\langle\rho\rangle_{\mathrm{R}}^{\mathrm{F}} \\
0,\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}} \neq\langle\rho\rangle_{\mathrm{R}}^{\mathrm{F}}
\end{array}\right.
$$

The fuzzy subset in the Definition 2.14 is called a fuzzy right Green Relation and denoted by R^{F}. The definition of the fuzzy left Green relation L^{R} and fuzzy Green relation I^{F} are defined similarly. The fuzzy subset R^{F}, L^{F} and I^{F} are fuzzy relations.

Theorem 2.15: The mapping R^{F} from $F(S) \times F(S)$ into the closed interval $(0,1)$ defined as: $\mathrm{R}^{\mathrm{F}}(\mu, \rho)$-1 if $\langle\mu\rangle{ }_{\mathrm{R}}-\langle\rho\rangle_{\mathrm{R}}^{\mathrm{F}}$ and $R^{F}(\mu, \rho)=0$ if $\langle\mu\rangle_{R^{F}}^{F} \neq\langle\rho\rangle_{R}^{F}$ is a fuzzy relation on $F(S)$.

Proof: Let $(\mu, \rho)=\left(\mu^{\prime}, \rho^{\prime}\right)$ so, $\mu^{\prime}=\mu^{\prime}$ and $\rho=\rho^{\prime}$. If $\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}}=\langle\rho\rangle_{\mathrm{R}}^{\mathrm{F}}$ then $\left\langle\mu^{\prime}\right\rangle_{\mathrm{R}}^{\mathrm{F}}=\left\langle\rho^{\prime}\right\rangle_{\mathrm{R}}^{\mathrm{F}}$ and we get $\mathrm{R}^{\mathrm{F}}(\mu, \rho)$ $=1=R^{\mathrm{F}}\left(\mu^{\prime}, \rho^{\prime}\right)$. For the other case, if $\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}} \neq\langle\rho\rangle_{\mathrm{R}}^{\mathrm{F}}$ then $\left\langle\mu^{\prime}\right\rangle_{\mathrm{R}}^{\mathrm{F}} \neq\left\langle\rho^{\prime}\right\rangle_{\mathrm{R}}^{\mathrm{F}}$. Finally, w obtain $\mathrm{R}^{\mathrm{F}}(\mu, \rho)=0=\mathrm{R}^{\mathrm{F}}\left(\mu^{\prime}, \rho^{\prime}\right)$. The mapping R^{F} is a mapping from $F(S) \times F(S)$ into the closed interval $(0,1)$. Thus, we have $\mathrm{R}^{\mathrm{F}}(\mu, \rho)$ is a fuzzy subset, i.e., the value of $\mathrm{R}^{\mathrm{F}}(\mu, \rho)$ between 0 and 1 . So, it is a fuzzy relation.

Similar to Theorem 2.15, the mapping $L^{F}\left(I^{F}\right)$ from $\mathrm{F}(\mathrm{S}) \times \mathrm{F}(\mathrm{S})$ into the closed interval $(0,1)$ defined as: $L^{\mathrm{F}}(\mathrm{u}, \mathrm{p})=1$ if $\langle\mu\rangle_{\mathrm{L}}^{\mathrm{F}}=\langle\rho\rangle_{\mathrm{L}}^{\mathrm{F}}\left(\langle\mu\rangle_{\mathrm{L}}^{\mathrm{F}}=\langle\rho\rangle_{\mathrm{L}}^{\mathrm{F}}\right)$ and $\left.\mathrm{L}^{\mathrm{F}}(\mathrm{u}, \mathrm{p})=0\right)$ $\left(\mathrm{I}^{\mathrm{F}}(\mu, \rho)=0\right)$ if $\langle\mu\rangle_{\mathrm{L}}^{\mathrm{F}} \neq\langle\rho\rangle_{\mathrm{L}}^{\mathrm{F}}\left(\langle\mu\rangle_{\mathrm{L}}^{\mathrm{F}} \neq\langle\rho\rangle_{\mathrm{L}}\right)$ is a fuzzy relation on F(S).

Theorem 2.16: The fuzzy relation R^{F} defined as on the Definition 2.14 is a fuzzy similarity relation on $\mathrm{F}(\mathrm{S})$.

Proof: Based on the Definition 2.2, we must prove that R^{F} is reflexive, i.e., $\mathrm{R}^{\mathrm{F}}(\mu, \mu)=1$. It is always fulfilled that $\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}}=\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}}$. Based on the Definition 2.14, we obtain $\mathrm{R}^{\mathrm{F}}(\mu, \mu)=1$. The second one, we must prove that R^{F} is symmetric, i.e., $\mathrm{R}^{\mathrm{F}}(\mu, \rho)=\mathrm{R}^{\mathrm{F}}(\rho, \mu)$. If $\mathrm{R}^{\mathrm{F}}(\mu, \rho)=1$, then $\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}}=\langle\rho\rangle_{\mathrm{R}}^{\mathrm{F}}$ and $\langle\rho\rangle_{\mathrm{R}}^{\mathrm{F}}=\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}}$. Now, we obtain $R^{F}(\rho, \mu)=1$. Finally, we have $R^{F}(\mu, \rho)=R^{F}(\rho, \mu)$. We can prove similarly for other case $\mathrm{R}^{\mathrm{F}}(\mu, \rho)=0$. Thirdly, we must proof that R^{F} is transitive, i.e., $\left(R^{\circ} R\right)(\mu, \rho) \geq R(\mu, \rho)$. Based on the definition, we have:

$$
(\mathrm{R} \circ \mathrm{R})(\mu, \rho)=\max _{\alpha \in \mathrm{F}(\mathrm{~s})}\{\min \{\mathrm{R}(\mu, \alpha), \mathrm{R}(\alpha, \rho)\}\}
$$

If the case is $\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}}=\langle\rho\rangle_{\mathrm{R}}^{\mathrm{F}}$ and $\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}}=\langle\alpha\rangle_{\mathrm{R}}^{\mathrm{F}}$, then we have:

$$
(\mathrm{R} \circ \mathrm{R})(\boldsymbol{\mu}, \rho)=\max _{\mathrm{c} \in \mathrm{~F}(\mathrm{~S})}\{\min \{1,1\}\} \geq 1=\mathrm{R}(\boldsymbol{\mu}, \rho)
$$

If the case is $\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}} \neq\langle\rho\rangle_{\mathrm{R}}^{\mathrm{F}}$ and $\langle\mu\rangle_{\mathrm{R}}^{\mathrm{F}}=\langle\alpha\rangle_{\mathrm{R}}^{\mathrm{F}}$, then we have:

$$
(\mathrm{R} \circ \mathrm{R})(\mu, \rho)=\max _{\mathrm{a} \in \mathrm{~F}(\mathrm{~S})}\{\min \{0,1\}\} \geq 0=\mathrm{R}(\boldsymbol{\mu}, \boldsymbol{\rho})
$$

For the other cases, we can prove similarly as the above.

Example 2.17: Based on the Example 2.8 and 2.9, we get:

$$
\bigwedge_{i} \beta_{i}(x)=\inf \left\{\beta_{i}(x)\right\}=\inf \left\{0.5+\Delta_{i}\right\}=0.5
$$

So, we obtain $\alpha \subseteq \wedge_{i} \beta_{i}$. It is clearly that $\wedge_{i} \beta_{i}$ is the smallest fuzzy ideal fuzzy containing α or in other word $\wedge_{i} \beta_{\mathrm{i}}$ is a fuzzy ideal generated by α and denoted by $\langle\alpha\rangle{ }_{\mathrm{R}}$:

$$
\bigwedge_{\mathrm{i}} \delta_{\mathrm{i}}(\mathrm{x})=\inf \left\{\beta_{\mathrm{j}}(\mathrm{x})\right\}=\inf \left\{0.5+\varepsilon_{\mathrm{i}}\right\}=0.5
$$

So, we obtain $\alpha^{\prime} \subseteq \wedge_{j} \delta_{j}$. It is clearly that $\wedge_{j} \delta_{j}$ is the smallest fuzzy ideal fuzzy containing α^{\prime} or in other word $\wedge_{j} \delta_{j}$ is a fuzzy ideal generated by α^{\prime} and denoted by $\left.\left\langle\alpha^{\prime}\right\rangle\right\rangle_{R}$. Finally, we have $\langle\alpha\rangle_{\mathrm{R}}^{\mathrm{F}}=\left\langle\alpha^{\prime}\right\rangle_{\mathrm{R}}^{\mathrm{F}}$ or in the other word $\left\langle\alpha, \alpha^{\prime}\right\rangle \in \mathrm{R}^{\mathrm{F}}$.

Fuzzy Green relation on bilinear form semigroups:

Fuzzy right Green relation R^{F}, fuzzy left Green relation L^{F} and fuzzy Green relation I^{F} are fuzzy equivalence relations on $F(S(B))$, respectively. For every $\alpha \in F(S(D))$, we define a fuzzy subset $\mathrm{R}^{\mathrm{F}}{ }_{(\alpha)}$ which is defined as $\mathrm{R}^{\mathrm{F}}{ }_{(\alpha)}(\beta)=\mathrm{R}^{\mathrm{F}}(\alpha, \beta)$, for every $\beta \in \mathrm{F}(\mathrm{S}(\mathrm{B}))$. So, we have $\mathrm{R}^{\mathrm{F}}{ }_{(\alpha)}$ is a fuzzy subset on the family of fuzzy subset on F ($\mathrm{S}(\mathrm{B})$). The following proposition is one of the properties of this relation.

RESULTS AND DISCUSSION

Proposition 3.1: For arbitrary $\mu, \beta \in \mathrm{F}(\mathrm{S}(\mathrm{B})$), then for a fuzzy right Green relation R^{F} we have the following bi-implication:

$$
\mathrm{R}_{(\alpha)}^{\mathrm{F}}=\mathrm{R}_{(\beta)}^{\mathrm{F}} \Leftrightarrow \mathrm{R}^{\mathrm{F}}(\alpha, \beta)=1
$$

Proof: The first we assume that $\mathrm{R}_{(\alpha)}^{\mathrm{F}} \cdot \mathrm{R}_{(\beta)}^{\mathrm{F}}$. Therefore, we have:

$$
\mathrm{R}_{(\alpha)}^{\mathrm{F}}(\beta)=\mathrm{R}_{(\beta)}^{\mathrm{F}}(\beta)=\mathrm{R}^{\mathrm{F}}(\beta, \beta)=1
$$

Conversely, we assume that $\mathrm{R}^{\mathrm{F}}(\alpha, \beta)=1$. For every $\delta \epsilon \mathrm{F}(\mathrm{S}(\mathrm{B})$), we have:

$$
\begin{aligned}
\mathrm{R}_{(\alpha)}^{\mathrm{F}}(\delta) & =\mathrm{R}^{\mathrm{F}}(\alpha, \delta) \geq\left(\mathrm{R}^{\mathrm{F}} \circ \mathrm{R}^{\mathrm{F}}\right)(\alpha, \delta) \\
& =\sup _{\eta \in \mathrm{F}(\mathrm{~S}(\mathrm{~B}))}\left\{\min \left\{\mathrm{R}^{\mathrm{F}}(\alpha, \eta), \mathrm{R}^{\mathrm{F}}(\eta, \delta)\right\}\right\} \\
& =\min \left\{\mathrm{R}^{\mathrm{F}}(\alpha, \beta), \mathrm{R}^{\mathrm{F}}(\beta, \delta)\right\} \\
& =\min \left\{1, \mathrm{R}^{\mathrm{F}}(\beta, \delta)\right\}=\mathrm{R}^{\mathrm{F}}(\beta, \delta)=\mathrm{R}_{(\beta)}^{\mathrm{F}}(\delta)
\end{aligned}
$$

So, we have $\mathrm{R}_{(\alpha)}^{\mathrm{F}}(\boldsymbol{\delta})>\mathrm{R}_{\beta(\beta)}^{\mathrm{F}}(\boldsymbol{\delta})$ for every $\delta \in \mathrm{F}(\mathrm{S}(\mathrm{B}))$. It is mean that $\mathrm{R}_{(\alpha)}^{\mathrm{F}} \supseteq \mathrm{R}_{(\beta)}^{\mathrm{F}}$. On the other, relation R^{F} is reflective. Hence, we have $R^{F}(\alpha, \beta)=R^{F}(\beta, \alpha)$. Now, we obtain:

$$
\text { For every } \begin{aligned}
\delta & \in \mathrm{F}(\mathrm{~S}(\mathrm{~B})) \\
& \mathrm{R}_{(\beta)}^{\mathrm{F}}(\delta)=\mathrm{R}^{\mathrm{F}}(\beta, \delta) \\
\geq & \left(\mathrm{R}^{\mathrm{F}} \circ \mathrm{R}^{\mathrm{F}}\right)(\beta, \delta) \\
= & \sup _{\eta \in \mathrm{F}(\mathrm{~S}(\mathrm{~B}))}\left\{\min \left\{\mathrm{R}^{\mathrm{F}}(\beta, \eta), \mathrm{R}^{\mathrm{F}}(\eta, \delta)\right\}\right\} \\
= & \min \left\{\mathrm{R}^{\mathrm{F}}(\beta, \alpha), \mathrm{R}^{\mathrm{F}}(\alpha, \delta)\right\} \\
= & \min \left\{1, \mathrm{R}^{\mathrm{F}}(\beta, \alpha)\right\}=\mathrm{R}^{\mathrm{F}}(\mathrm{a}, \delta)=\mathrm{R}_{(\mathrm{a})}^{\mathrm{F}}(\delta)
\end{aligned}
$$

So, we have $\mathrm{R}_{(\beta)}^{\mathrm{F}}(\boldsymbol{\delta})>\mathrm{R}^{\mathrm{F}}{ }_{(\alpha)}(\delta)$ for every $\delta \epsilon \mathrm{F}(\mathrm{S}(\mathrm{B}))$. It is mean that $\mathrm{R}^{\mathrm{F}}{ }_{(\alpha)} \subseteq \mathrm{R}^{\mathrm{F}}{ }_{(\beta)}$. Finally, we can prove that $\mathrm{R}^{\mathrm{F}}{ }_{(\alpha)}=\mathrm{R}_{(\beta)}^{\mathrm{F}}$. The following proposition give the properties of relation L^{F} and I^{F}, respectively.

Proposition 3.2: For arbitrary elements $\alpha, \beta \in F(S(B))$, then for fuzzy right Green relation L^{F} we have the following bi-implication:

$$
\mathrm{I}_{(\alpha)}^{\mathrm{F}}=\mathrm{I}_{(\beta)}^{\mathrm{F}} \Leftrightarrow \mathrm{~L}^{\mathrm{F}}(\alpha, \beta)=1
$$

Proof: The proof of this proposition is in the same way with the proof of the previous proposition.

Proposition 3.3: For arbitrary elements $\alpha, \beta \in F(S(B))$, then for fuzzy right Green relation I^{F} we have the following bi-implication:

$$
I_{(\alpha)}^{\mathrm{F}}=I_{(\beta)}^{\mathrm{F}} \Leftrightarrow I^{\mathrm{F}}(\alpha, \beta)=1
$$

Proof: The proof of this proposition is in the same way with the proof of the previous proposition. Furthermore, fuzzy subsets $\mathrm{R}^{\mathrm{F}}{ }_{(\alpha)}, \mathrm{L}^{\mathrm{F}}{ }_{(\alpha)}$ and $\mathrm{I}^{\mathrm{F}}{ }_{(\alpha)}$ of bilinear form semigroup $\mathrm{F}(\mathrm{S}(\mathrm{B}))$ are equivalence classes of equivalence relations $\mathrm{R}^{\mathrm{F}}, \mathrm{L}^{\mathrm{F}}$ and I^{F} which contain α, respectively. Based on these equivalence classes, we can construct a set as:

$$
\mathrm{F}(\mathrm{~S}(\mathrm{~B})) / \mathrm{R}^{\mathrm{F}}=\left\{\mathrm{R}_{(\alpha)}^{\mathrm{F}} \mid \alpha \in \mathrm{F}(\mathrm{~S}(\mathrm{~B}))\right\}
$$

We can define an operation "*" on $\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{R}^{\mathrm{F}}$ which is defined as:

$$
\mathrm{R}_{(\alpha)}^{\mathrm{F}} * \mathrm{R}_{(\beta)}^{\mathrm{F}}=\mathrm{R}_{(\alpha \beta)}^{\mathrm{F}}
$$

This operation is a binary operation, i.e., for every $\mathrm{R}_{(\alpha)}{ }^{\mathrm{F}}=\mathrm{R}_{(\beta)}{ }^{\mathrm{F}}$ and $\mathrm{R}_{(y)}{ }^{\mathrm{F}}=\mathrm{R}_{(8)}{ }^{\mathrm{F}}$ we have:

$$
\begin{aligned}
\mathrm{R}^{\mathrm{F}}(\alpha \gamma, \beta \delta) & \geq \mathrm{R}^{\mathrm{F}} \circ \mathrm{R}^{\mathrm{F}}(\alpha \gamma, \beta \delta) \\
& =\sup _{\varepsilon \in \mathrm{F}(\mathcal{S}(\mathrm{~B}))}\left\{\min \left\{\mathrm{R}^{\mathrm{F}}(\alpha \gamma, \varepsilon), \mathrm{R}^{\mathrm{F}}(\varepsilon, \beta \delta)\right\}\right\} \\
& \geq \min \left\{\mathrm{R}^{\mathrm{F}}(\alpha \gamma, \beta \gamma), \mathrm{R}^{\mathrm{F}}(\beta \lambda, \beta \delta)\right\}
\end{aligned}
$$

 operation '*' is associative, i.e., for every $\mathrm{R}_{(\alpha)}{ }^{\mathrm{F}}, \mathrm{R}_{(\beta)}{ }^{\mathrm{F}}$, $\mathrm{R}_{(\mathrm{y})}{ }^{\mathrm{F}} \in \mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{R}^{\mathrm{F}}$:

$$
\begin{aligned}
& \left(\mathrm{R}_{(\alpha)}^{\mathrm{F}} * \mathrm{R}_{(\beta))}^{\mathrm{F}}\right) * \mathrm{R}_{(y)}^{\mathrm{F}}=\mathrm{R}_{(\alpha \beta)}^{\mathrm{F}} * \mathrm{R}_{(\gamma)}^{\mathrm{F}} * \\
& =\mathrm{R}_{((\alpha \beta) \gamma)}^{\mathrm{F}}=\mathrm{R}_{(\alpha,(\beta \gamma))}^{\mathrm{F}}=\mathrm{R}_{(\alpha)}^{\mathrm{F}} * \mathrm{R}_{(\beta \gamma))}^{\mathrm{F}} \\
& =\mathrm{R}_{(\alpha)}^{\mathrm{F}} *\left(\mathrm{R}_{(\beta)}^{\mathrm{F}} * \mathrm{R}_{(\gamma)}^{\mathrm{F}}\right)
\end{aligned}
$$

So, we have proven that $\left(\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{R}^{\mathrm{F}},{ }^{*}\right)$ is a semigroup. In the same way, we can construct another semogroups, i.e. $\left(\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{L}^{\mathrm{F}},{ }^{*}\right)$ and $\left(\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{I}^{\mathrm{F}},{ }^{*}\right)$.

CONCLUSION

Refer to the second section and third section, we conclude to define a fuzzy (right/left) Green relation I^{F} ($\mathrm{R}^{\mathrm{F}} / \mathrm{L}^{\mathrm{F}}$) on a semigroup, the first we define a fuzzy (right/left) ideal generated by an fuzzy subset. We define $(\alpha, \beta) \epsilon \mathrm{I}^{\mathrm{F}}$ if and only if α and β generade the same fuzzy ideal. Futhermore, we can define $(\alpha, \beta) \in \mathrm{R}^{\mathrm{F}}$ and $(\alpha, \beta) \in \mathrm{L}^{\mathrm{F}}$ in the same way, respectively. We have proven that these relations are equivalence relations on a family all fuzzy subsets on a semigroup which denoted by $\mathrm{F}(\mathrm{S})$. This properties hold on a bilinear form semigroup. Furthermore we defined a set of all equivalence classes which are denoted by $\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{R}^{\mathrm{F}}, \mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{I}^{\mathrm{F}}$ and $\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{L}^{\mathrm{F}}$. We have proven that $\left(\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{R}^{\mathrm{F}},{ }^{*}\right)$ is a semigroup. Similarly, we can prove that $\left(\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{I}^{\mathrm{F}},{ }^{*}\right)$ and $\left(\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{L}^{\mathrm{F}},{ }^{*}\right)$ are semigroups. We obtain many properties related to
these semigroups, i.e., $\mathrm{R}^{\mathrm{F}}{ }_{(\alpha)}=\mathrm{R}^{\mathrm{F}}{ }_{(\beta)} \oplus \mathrm{R}^{\mathrm{F}}(\alpha, \beta)=1$, $\mathrm{L}_{(\alpha)}^{\mathrm{F}}=\mathrm{L}_{(\beta)}^{\mathrm{F}} \mapsto \mathrm{L}^{\mathrm{F}}(\alpha, \beta)=1$ and $\mathrm{I}_{(\alpha)}^{\mathrm{F}}=\mathrm{I}_{(\beta)}^{\mathrm{F}} \mapsto \mathrm{I}^{\mathrm{F}}(\alpha, \beta)=1$. The other results, we have obtained: for arbitrary α, $\beta \in \mathrm{F}(\mathrm{S}(\mathrm{B}))$, then for a fuzzy right Green relation R^{F} we have the following bi-implication $\mathrm{R}_{(\alpha)}^{\mathrm{F}}=\mathrm{R}_{(\beta)}^{\mathrm{F}} \Leftrightarrow \mathrm{R}(\alpha, \beta)=1$. Following to the properties are similar with the previous property $\mathrm{L}_{(\alpha)}^{\mathrm{F}}=\mathrm{L}_{(\beta)}^{\mathrm{F}} \curvearrowleft \mathrm{L}^{\mathrm{F}}(\alpha, \beta)=1$ and $\mathrm{I}_{(\alpha)}^{\mathrm{F}}=\mathrm{I}_{(\beta)}^{\mathrm{F}} \curvearrowleft \mathrm{I}^{\mathrm{F}}(\alpha, \beta)=$ 1. We construct a set, i.e., $\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{R}^{\mathrm{F}}=\left\{\mathrm{R}^{\mathrm{F}}{ }_{(\alpha)} \mid \alpha \in \mathrm{F}(\mathrm{S}(\mathrm{B}))\right\}$ and defined $\mathrm{R}_{(\alpha)}^{\mathrm{F}}{ }^{*} \mathrm{R}_{(\beta)}^{\mathrm{F}}=\mathrm{R}^{\mathrm{F}}(\alpha, \beta)$, then $\left(\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{R}^{\mathrm{F}},{ }^{*}\right)$ is a semigroup. In the same way, we can construct semigroups $\left(\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{L}^{\mathrm{F}},{ }^{*}\right)$ and $\left(\mathrm{F}(\mathrm{S}(\mathrm{B})) / \mathrm{I}^{\mathrm{F}},{ }^{*}\right)$.

REFERENCES

Aktas, H., 2004. On fuzzy relation and fuzzy quotient groups. Int. J. Comput. Cognition, 2: 71-79.
Asaad, M., 1991. Groups and fuzzy subgroups. Fuzzy Sets Syst., 39: 323-328.
Howie, J.M., 1976. An Introduction to Semigroup Theory. 1st Edn., Academic Press, New York, ISBN-10: 0123569508.

Kandasamy, W.V., 2003. Smarandache Fuzzy Algebra. American research Press, Rehoboth Beach, Delaware, ISBN:1-931233-74-8, Pages: 454.
Karyati, K., 2002. [Semi group constructed from bilinear forms]. Master Thesis, Gadjah Mada University, Yogyakarta, Indonesia.
Kuroki, N., 1992. Fuzzy congruences and fuzzy normal subgroups. Inf. Sci., 60: 247-259.
Malik, D.S. and J.N. Mordeson, 1998. Fuzzy commutative algebra. World Scientific Publications, USA.
Mary, X., 2011. On generalized inverses and Green's relations. Linear Algebra Appl., 434: 1836-1844.
Murali, V., 1989. Fuzzy equivalence relations. Fuzzy Sets Syst., 30: 155-163.
Rajendran, D. and K.S.S. Nambooripad, 2000. Bilinear forms and semigroup of linear transformations. South East Asian Bull. Math., 24: 609-616.

