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Abstract: The cutwidth mimmization problem consists of finding a linear layout of a graph so that, the meximum
linear cut of edges (1.e., the number of edges that cut a line between consecutive vertices) 1s minimized. This
study, starts by reviewing previous exact approaches for special classes of graphs as well as a linear integer
formulation for the general problem. We propose a branch and bound algorithm based on different lower

bounds on the cutwidth of partial solutions.
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INTRODUCTION

Let G =(V, E) be a graph with vertex set V (|| =n)and
edge set E (JE| = m). A labeling or linear arrangement f of
G assigns the integers {1, 2, ..., n} to the vertices of in
such a way that each vertex veV has a different label f(v)
(1.e., f(v)=f(u) for all u, veV). The cutwidth of a vertex v
with respect to a labeling f, CW{v) is given by the
number of edges (u, w)eE in the graph satisfying
f{u)<f(v)<f(w). In mathematical terms:

Cw(v) = [{(w, wie E: f (u) < (v)<f (w)]
Given a labeling f, the cutwidth of G is defined as:

CW, (G) = max CW,(v)
vewv

The optimum cutwidth of graph G, CW(QG) 1s defined
as the minimum CW{(G) value over all possible labelings
f. In other words, the cutwidth minimization problem
consists of finding a labeling f that minimizes CW{G) over
set IIn of all possible labelings:

CW(G) = minCW, (G)
eln

This problem is NP-hard as stated in Gavril even for
graphs with a maximum degree of three (Makedon et al.,
1985). Some special cases have been solved optimally
for example (Harper, 1966) solved the cutwidth for
hypercubes (Chung et af., 1982) presented a O(log™ n)
time algorithm for the cutwidth oftrees with n vertices and
with maximum degree d. Yannakakis (1985) improved the
aforesaid results by giving a O(n log n) time algorithm to

determine the cutwidth of trees with n vertices. In
particular for k-level, t-ary trees T,, it holds that:

CWI(T, ,) = H(k ~ It 1)}, vk <3

Exact methods to obtain the optimal cutwidth of grids
have been proposed m Rolim. Specifically for width,
height >2 the researchers proved that:

{2, if width = height = 2 }
CW(Lmdﬂq, helght) = . . . .
min{width + 1, height + 1}, otherwise
Fmally, Thilikos et al. (2001) presented an algorithm
to compute the cutwidth of bounded degree graphs with
small tree-width in polynomial time. Figure la shows
an example of an undirected graph with 6 vertices
and 10 edges. Figure 1b shows a labeling, f of the
graph inFig. 1a, setting the vertices in a line in the order
of the labeling as commonly represented in the cutwidth
problem. In this way, since f(A) = 1 Vertex A comes first,
followed by Vertex D(f(D) = 2) and so on. We represent £
with the ordering (A, D, E, F, B, C) meaning that vertex A
is located in the first position (Label 1), Vertex D is located
in the second position (Label 2) and so on. In Fig. 1b, the
cutwidth of each vertex is represented as a dashed line
with its corresponding value at the bottom. For example,
the cutwidth of vertex A 18 CW{A) = 5 because the edges
(A, D) (ALE) (A, F) (A, B)and (A, C) have an endpoint in
A labeled with 1 and the other endpoint in a vertex
labeled with a value >1. Similarly, we can compute the
cutwidth of vertex B, CW(B) = 4 by counting the
appropriate number of edges (A, C) (D, C) (F, C) and
(D, C)). Then, since the cutwidth of graph G, CW{(3) 1s the
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CW,(A)=5 CW,(D)=7 CW,(E)=5 CW,(F)=5 CW,(B)=4

Fig. 1: a) Graph example and b) Cutwidth of for a labeling f

maximum of the cutwidth of all verticesin G in
this particular example, we obtain CW{G) = CW{D) =7,
represented in the figure as a bold line with the
corresponding value at the bottom.

Luttamaguzi et al. (2005) proposed the following
linear integer formulation to solve the cutwidth
minimization problem. Minb (s.t.):

sfo.1} (1)

i,ke{l .. n} (2)
Yo% =L ViE{L ] (3)
YopS =Lk o} )
v <%} (3)

v =X, (6)

XX <y 4 )

Y i <b Vee |l -1} ©

k=c<ly
ek

where, = 1s a decision binary variable whose indices are
i, ke{l, 2, ..., n}. This variable specifies whether i is placed
in position k in the ordering. Tn other words, for all xf
(i, ke {1, 2, ..., n}) they take on value 1 if and only if i
occuples the position k i the ordering; otherwise xf
takes on value 0. Constraints (Eq. 3 and 4) ensure that
each vertex 1s only assigned to one position and one
position is only assigned to one vertex, respectively.
Consequently, constraints (Eq. 1-4) together imply that a
solution of the problem is an ordering. The decision
binary variableis 7' e{0,1} 1s defined in terms of = and x}

as follows:

kLl _ Lk 1
Vo, =X AKX,

where, 1, je{l, 2, .., n} (v, v)eEandk, le{l, 2, . n} the
labels associated to vertex v, and v,, respectlvely. In the
linear formulation above this conjunction is computed
with constraints (Eq. 5-7).

Constraint Eq. 8 computes for each position C in the
ordering the number of edges whose origin 13 placed in
any position k (1 <k<c) and destination in any Position 1
{c<le<n). The cutwidth problem consists of mimmizing
the maximum number of cutting edges in any
position cefl, ..., n-1} of the labeling. Therefore, the
objective function b must be larger than or equal to this
quantity. In thus study, we propose a branch and bound
algorithm for the cutwidth minimization problem.

Lower bounds for partial solutions: Given a subset S of V
with k<n vertices and an ordering gell, assigning the
itegers {1, 2, ..., k} to the vertices in S, we define a partial
solution as the pair (S, g). A complete solution of the
cutwidth problem in the graph G = (V, E) can be obtamned
by adding n-k elements from VS to 3, assigming them the
wntegers {k+1, k+2, ..., n}. Therefore, the elements m 3
ordered according to g can be viewed as an incomplete or
partial solution of the cutwidth problem in G. We define U
as the set of unlabeled vertices (U = ViS) and 3, as the
setof all complete solutions of the problem in G obtained
by adding ordered elements to S. Figure 2 shows the
partial solution (S, g) of the example introduced in Fig. la
where the vertices in 3 = {A, D, E} have been labeled with
g(g(A)=1,g(D)=2andg (E)=3). Vertices B, C and F
remain unlabeled and therefore belong to set 1.

Given a partial solution (3, g) with ScG and gell,, we
consider the graph Gy = (S, Eg where, S 1s the set of
labeled vertices and E,cE is the set of edges among
them. In the example depicted m Fig. 2, S= {A, D, E},
E:={(A,E). (D, E)} and Sg = {(A,D,E,F,C,B), (A, D, E,
C,B,F),(ADEB,FC),ADEFBC,ADECFE,
B)L(A,D,E, B, C, F)}.
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Fig. 2: Partial solution

Particularizing the expression to compute the
cutwidth shown in section 1 to a partial solution (5, g), we
can calculate the cutwidth of each labeled vertex in Gy
with respect to the ordering g and the edges in
By, CW (v) as follows:

CW, ()=[{(u,w)e E;: g(w) < g(v) <g(w)]

In the example in Fig. 2, we have CWg(A) = 1,
CWg(D) =2 and CWg(E) = 0. Tt is clear that the cutwidth
values 1n the partial solution provide a lower bound
of their corresponding values than in any complete
solution feSg. In this example, if f is a complete
solution (with 4-6 assigned to C, B and F), we have
CW{A):CWg(A) = 1, CW(D):CWg(D) = 2 and
CW{E) = CWg(E) = 0. We can therefore conclude
that the cutwidth of the graph CW; () is larger than
max {CWg(A), CWg(D), CWg(E)} = 2 and say that this
maximmum 18 a lower bound of the cutwidth In
mathematical terms for any feSg:

Cwf(G) = LB(S, g)=max__, CWg(v)

In this study, we propose 5 lower bounds,
LB,-LB; to the value of CW{3) for feSg thus improving
this trivial lower bound, LRB(S, g). LB, is based on the
degree of the vertices in G, LB, computes the edges
between the labeled and unlabeled vertices, LB, is a
refinement of LB,, LB, considers the best vertex to be
labeled next in the partial solution and LB, is based on the
distribution of the edges in minimizing the cutwidth.

MATERIALS AND METHODS

Lower bound LB;: Let N(v) be the set of adjacent vertices
to vertex v and let E(v) be the edges with an endpoint n
v. Consider a solution f and the vertex u m position
f(¥)-1 (i.e., u precedes v in the ordering f). If an edge in
N(v) is adjacent to a vertex w with f{w)<f(v) then it
contributes to CW{(u); otherwise, it contributes to CW{v)
(the edge 15 computed in the cutwidth of the vertex).
Then, CW{u)+CW{v)=N(v)|. Therefore:

max {CW, (u), CW,(v)} 2N (v)|/2

Considering that the cutwidth of the graph CW {(G) 1s
the maximum of the cutwidths of all its vertices, we
conclude that [N(v)|/2 is a lower bound on CW{(G):

CW,(G) 2 LB, =max,_,, PN%W

In the example in Fig. 2, we obtain LB, = 3. Note that
this bound 1s independent of the labeling f and 1t actually
provides a lower bound on the optinum cutwidth of the
graph CW(G).

Lower bound LB,: Given a partial solution (5, g) and a
complete solution f in Sg, the cutwidth of a vertex veS
with respect to f, CW(v) can be computed as:

CW,(v) =CW,(v)+ ¥ wes [N, (u) (9)

=g (u)=g(v)

where, Ni{(u) 15 the set of unlabeled adjacent vertices to u.
The first term 1n this expression, CWg(v), corresponds to
the cutwidth of v in Gy = (S, E;). The second term
computes the number of edges with an endpoint in a
vertex u labeled with g(u)<g(v) (i.e., previous to v in the
ordering g) and the other endpomt in aunlabeled vertex w.
Note that f(w)>g(v) for all w n U and any labeling
(solution) f in Sg. This 13 why we include all the edges
with an endpoint in the unlabeled vertices w in the
computation of CW{v).

Given that Eq. 9 provides an expression of CW{v) for
all v in ScV and that CW{(G) 1s the maximum of CW;(v) for
all v in V, we can conclude that;

CW,(G)=2LB,(v) = max__,
{CWg(V)+ Y, wes  [Ny(u)f}

1=g(u)2g(v)

In the partial solution shown in Fig. 2, the value of the
cutwidth of any solution f in Sg, CW{G), satisfies:

CW, (G) > max {CW, (A), CW,(D),
CW(E)} =max {4,7,6} =7

CW,(A) = CW, (AN ,(A)=1+3=1
CW,(D) = CW,(Dy+[N,(A)|+|N,, (D) = 2+3+2=7
CW,(E) = CW,(ErHN, (A)| +|N,, (D) +|N, ()| = 0+3+2+1 =6

Lower bound LB;: Given a partial solution (3, g) and an
unlabeled vertex uel, let Ny(u) be the set of labeled
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adjacent vertices to u. Let v, be the vertex in S with the
largest label (1e., g(v,) = k = |3)). It 15 clear that for
any f in3g and any v in S, f(v)<f{v )<f(u). Then,
Cw(v,)2 [Ng(u)|. On the other hand, we can also apply the
same argument to the vertices in 1T as in LB,, obtaining an
unproved lower bound LB, for the vertices n U:

CW,(G) > LB, = maxueu{BN(u) ] N, (W)

In the example n Fig. 2, we can see that the value of
LB, for vertices B, C and F:

LB,(B) = max {B|N(B) } N, (B)} = max{2,3} =3

LB,(C) = max {B|N(C) W N, (C)} = max{2,2} =2

LB, (F) = max {BN(F)

—‘, N, (F)} = max{1,1} =1

Therefore, LB, will be for this graph:

LB, = max{LB, (B), LB, (C)
LB, (F)} = max{3,2,1} = 3

Lower bound LB,: As in the previous case, consider a
partial solution (S, g) an unlabeled vertex ueU the vertex
v, 1n 3 with the largest label and a solution f in Sg. If the
vertex u is labeled in f with k+1 (i.e., u follows vk in the
ordering f) its cutwidth can be computed as:

CW;(u) = CW (v, -(N (N, (w))

where, Ny(u) is the set of labeled adjacent vertices to u
and N {u) 1s the set of unlabeled adjacent vertices to u.
We can then compute a lower bound of the CW ~value for
the vertex in position k+1 by computing the maximum of
the term [Ny(w)|- N, ()| for all uell. Thus we obtain:

CW:(G) 2 LB, = CW (v rmax, ., (Ng{u)-N, (u))

Figure 3a shows a partial solution (S, g) of the
example given mn Fig. 1 where, S = {E, F}, g(E) = 1,
gF)=2and U= {A B, C, D} with CWg(F) = 4. Figure 3b
shows the value of Ng(u)|-N fu)| for each vertex u m U.
According to the definition given above, we select the
Vertex A, giving a value of LB, = 4-(-1) = 5. This means
that independently of the labeling of the vertices in 1, the
value of the final solution 1s =5.

(a) (b)
gl]2 IN(W)-Ny (W)
S A PR3-
| B [0]-3)=-3
| c [p==2
D [13]=-2

Fig. 3: a) Partial solution and b) [Ny (w)|-[Ny, (u)| values for
every uelU

_______________

Fig. 4: Graph G” with m = n-1 edges (path)

Lower bound LB.: Given a graph with n vertices and m
edges we compute the lower bound LB, of its cutwidth
CW(G) by constructing an auxiliary graph G’ with n
vertices and m edges distributed m such a way that it has
minimum cutwidth. In other words, we “put” the edges in
G’ between the appropriate vertices to obtain a minimum
cutwidth. Tn this way, the cutwidth of G’ is a lower bound
of the cutwidth of G for any labeling of its vertices (it 1s in
fact a lower bound of the cutwidth of any graph with n
vertices and m edges).

Consider the case in which m<n, we construct the
awxiliary graph G” as a path (Fig. 4) n which some vertices
may eventually be disconnected (when m = n-1 it 15 a
connected path).

The cutwidth of G* =1 and it is clear that regardless
how the edges are distributed m, given that it has m edges
for any labeling f its cutwidth CW, (G) will be equal to or
larger than CW(G’) = 1. Moreover, if we have m = n, we
need to add an extra edge to the connected path G’ and i1t
necessarily results in a vertex with cutwidth 2; therefore
1n this case CW(G") = 2<CW (@) for any labeling f of the
vertices in G.

Let us now consider the case in which m=n. The best
way to distribute the m edges in a graph with n vertices in
order to reduce its cutwidth 15 as follows: we place the
first n-1 edges joining “consecutive” vertices in the graph
(we call them edges of length 1) as shown in Fig. 4
(between v, and v, for any 1). Then, we can add a few
extra edges increasing the cutwidth by only one unit.
Specifically, we can add (n-1¥2 edges between
“alternated” vertices (v, and v;,) as shown in Fig. 5,
keeping the cutwidth of” with value 2. We shall denote
them edges of length 2. Therefore, the cutwidth of a graph
with n vertices and m edges with n<m<n-1+(n-1)}/2
satisfies CW(G") = 2<CW{Q) for any labeling f of the
vertices in G. Any extra edge would result in a
cutwidth of 3.
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Fig. 6: Graph G with cutwidth 3

Figure 6 shows how can we add | (n-2) /2 edges to the
graph in Fig. 5 keeping the cutwidth of G with value 3.
Then, following the same argument described above, the
cutwidth of a graph G with n vertices and m edges
with (n-1)H (n-1) [ 2<m <(n-1 ¥{n-2) satisfies 3<CW{G) for
any labeling f of its vertices (It 15 easy to see that
|(n-1) [/2H (n-2) /2 = n-2).

Generalizing this mcremental construction of G we
observe that there is a maximum of n-k edges of length k
(between v, and v, for any 1) that can be added to
(G’ (in which we have previously added all the edges with
lengths t from t = 1 to k-1). The first [(n-1) [k edges
increase the cutwidth of” by one unit the second | (n-2) [’k
by another unit the third | (n-3) [’k n another unit and so
on until the n-k edges of length k have been added and
the cutwidth of G* mcreases by k units. The cutwidth of
graph G’ provides a bound of the cutwidth of any graph
with the same number of vertices and edges.

Initial upper bound: In this study, we propose a heuristic
approach to obtain an upper bound for the cutwidth
problem based on GRASP methodology (Feo et al., 1994).
Each GRASP iteration mvolves constructing a trial
solution and then applying a local search from the
constructed solution. Algorithm 1 showsa Pseudo-code
of our GRASP construction method for the cutwidth
problem.

Algorithm 1 (Pseudo-code of the constructive method

Procedure constructive:

Let 8 and U be the sets of labeled and unlabeled vertices of the graph,
respectively

Initially S =@ andU=G

Select a vertex u firom U rand omly

Assign the label k =1 tou. 8 = {u}, U=TU\{u}

While (U=3)

k=k+1

Construct CL = {veU/(w, VcEvweS }

Let N:(v) and Ny(v) be the set of adjacent labeled and unlabeled vertices to
v, respectively

Compute e(v)= [Ng|-INy(¥)|vv in CL

Construct RCL = {veCL /e (¥)zth}

Select a vertex u randomty in RCL

Label u with the label k

U=1U{u}, § =8U{u}

RESULTS AND DISCUSSION

The constructive method starts by creating a list of
unlabeled vertices U (iitially U = V). The first vertex v 1s
randomly selected from all those vertices in U and labeled
with 1. In subsequent construction steps a candidate list
CL is formed by all the vertices in U that are adjacent to at
least one labeled vertex. For each vertex u in CL we
compute its evaluation e(u) as:

e{u) = N (v)]HN, (v)|
Where:
Ng(u) = The set of labeled adjacent vertices to u
Ny(u) = The set of unlabeled adjacent vertices tou

Note that in this step a greedy selection would label
the vertex u* having the maximum e-value with the next
available label which would be the mimimum CW{u)
value. However, by contrast, the GRASP methodology
computes a restricted candidate list, RCIL. with good
candidates and selects one at random. Specifically,
RCL = {veCL/e(v)=th} where the parameter th is a
threshold to establish the “good” elements for selection
as shown in Algorithm 1.

Once a solution has been constructed we apply an
improving phase based on a local search procedure. Our
local search method for the cutwidth problem 1s based on
insertion moves. Given a labeling f, we define the insertion
move MOVE (f, j, v) consisting of deleting v from its
current position f (v) and inserting it in position j. This
operation results mn the ordering ' as follows.

If f (v) = i then the vertex v is inserted just before
the vertex vj m position J. In mathematical term from
f= (., Vit Vi Vier »eoa Vs ¥, Viayp, ... ). We Obtain the new
ordering £ = (..., vj1. ¥V, Vi iy +oos Vips Vieps 100 ).

If f(v) = i<j the vertex v is inserted just after the
vertex v] in position . Therefore, from the ordering
f=( vV, Vi, Vi, ¥, Vi, .. ) Weobtain £/ = (L, vy,
Viets ooos Vi, Vi V, Vg, o),

We define the set of critical vertices CV as those with
a cutwidth value equal or close to the cutwidth of the
graph. These vertices determine the value of the objective
function or are considered likely to do so in subsequent
iterations. In each iteration, our local search method
selects a vertex v in CV and performs the first improving
move MOVE (f, j, v) where the meaning of improving is
not limited to the objective function (which provides little
information in this problem). The position j in the move is
computed as the median of the positions (according to f)
of the adjacent vertices to v (a search mechanism explores
only positions close to J). An improving move 1s the one
that either reduces CW{G) or the number of vertices in
CV. When a move 1s performed, the associated vertex 1s
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removed from CV. When the set becomes empty, we
recalculate it. The method cuts off when there is no
unproving move associated with the vertices in CV.

CONCLUSION

We have developed an exact procedure based on the
branch and bound methodology to provide solutions for
the cutwidth minimization problem. We have introduced
the partial solution as the set of solutions that share some
vertices and we have proposed several approaches to
computing lower bounds on partial solutions. These
bounds allow us to explore a relatively small portion of the
nodes in the search tree when implementing our branch
and bound procedure.
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