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Abstract: There are two main objectives of this Research. Firstly, it aims to numerically solve problems under
convection-diffusion category by RBF-collocation type of meshfree method. Secondly, the research proposes
a sumple but effective automatic node adaptive algorithm which 1s constructed and also embedded m the
computing process. The two main tasks are combined forming what we name as an automatic *Centroid-Node
Adaptive Meshless (CNAM)” method. All solutions obtained using CNAM are validated again other numerical
work, corresponding exacts and also those obtained without CNAM (or with conventional nodes). Tt has been
clearly shown from all examples that CNAM 1s capable of reproducing some challenging physics phenomenon
such as boundary layers with satisfactory level of accuracy.
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INTRODUCTION

Convection diffusion problems are governed by
typical mathematical models appearing in many branches
of sciences and engmeering such as biological, physical
chemical, physical m fluud mechanics, astrophysics,
meteorology and multiphase flow in oil reservoirs,
polymer flow and many other areas (Djidjeli et al., 2004).
Convection diffusion equations consist of two different
phenomena, convection and diffusion. Solving these
equations 1s an unportant and challenging problem. In the
study of this type of problem, traditionally the numerical
solution in many cases has been tackled using the Finite
Difference Method (FDM) the Finite Element Method
(FEM), Boundary Element Method (BEM) or the Finite
Volume Method (FVM). For FDM, FEM and FVM before
the computing process can be performed the mesh
generation m a domain 1s required to take place making
the methods rather difficult and time-consuming
particularly when dealing with higher dimensional
problems with complicated geometry. In the last two
decades, some alternative methods that do not require
mesh generation have been rapidly obtaining a huge
amount of interest. These methods are known as meshless
or meshitee methods. The idea and the main advantage of
these methods 1s that they only need a set of scattered
point within domain to evaluate the numerical solution. In

other words there 1s no relationship among the scattered
points. Several meshless methods have also been
reported in the literature for example the domain-based
methods including the element-free Galerkin method
(Belytschko et al, 1994) the local boundary integral
equation method (Sladek er al., 2000) and the Radial Basis
Functions (RBFs) approach (Sarra and Kansa, 2009,
Kansa, 1990a, b). In this research, we focus on one called
radial basis function collocation proposed by Kansa
(19904, b).

Adaptive techniques are useful tools to enhance
the quality of the numerical solutions with a minimal
computational effort. Most current adaptive techmiques
used m conjunction with meshless method, refnes the
solution either adding new nodes or changing the
position of existing nodes such that the computation al
error 1s reduced as much as possible. As meshless method
require only a set of arbitrarily distributed nodes without
requiring connectivity information, they can easily exploit
adaptive techniques because nodes can be easily added
and deleted or moved (Lin and Atluri, 2000; Liet al., 2003).
There are several adaptive methods that have been used
in conjunction with the meshless methods. Gomez et al.
(2006) built a global refinement technique for Kansa’s
unsymetric collocation approach solving steady state
partial differential equations by using the local node
refinement technique purposed by Behrens and Iske
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(2002), Behrens et al. (2001) and a quad-tree type
algorithm (Berger and Jameson, 1985; Boztosun and
Charafi, 2002). Zhang and Wang (2010) applied a stencil
of the fmite difference method and build up the new
iterative scheme to solve the implicit difference equation
for solving the numerical solution of the two dimensional
convection diffusion. It is found that the new scheme has
the same parallelism and a higher rate of convergence
than the Jacobi Tteration. Libre et al. (2008) present a
wavelet based adaptive scheme and investigated the
efficiency of this scheme for solving nearly singular
potential PDEs. The wavelet coefficients then were used
as an estimation of the sensible regions for node
adaption. It has been show that the proposed adaptive
scheme can detect the singularities both in the domain
and near the boundaries. GU and Liu (2006) proposed
several techniques to overcome the mstability 1ssues in
convection dommated phenomenon mecluding the
enlargement of the local support domain the upwind
support domain the adaptive upwind support domain the
biased support domain the nodal refinement and the
adaptive analysis.

MATERIALS AND METHODS

Mathematical background

RBF-collocation method

Definition 2.1: Fasshauer (2007) a function ®: R*=R with
dimension d 1s called radial provided there exists a
univariate function @:[0, =) - R such that ®(x) = ¢(r)
where r = | x|, xcR*and | .| is some norm on R*-usually the
Euclidean norm. The methodology starts with considering
a linear elliptic partial differential equation with boundary
conditions where g(x) and f(x) are known. We seek L(x)
from:

L(x)=f(x), xin Q (1

M(x)=g(x), x on 002 (2)
Where:
QcR?, 3Q = Denotes the boundary of domain Q
Land M = The linear elliptic partial differential
operators and operating on the domain
and boundary domain 3€2, respectively

For Kansa’s method it represents the approximate
solution () by the interpolation, using an RBF
mterpolation as the following:

i)=Y colx-x,| (3)

We can see that N linear dependent equations are
required for solving N unknowns of ¢. Substituting 8(x)
mto Eq. 1 and 2 we obtain the system of equations as
follows:

¥ ch(||x-xJH) “f(x)xeli=1, ., N, D

=1 1

ZJN:l c]M(p(”x-X]H) =g(x).x,€Bi=N+, . ,N (5)

Where:

N = Collocation points on both domain
£ and boundary domain o and
divide 1t into N, Interior points

Ny = Boundary points (N = N +Ng)

X =1x, ..., x4} = The set of collocation points

IT=4{x,....,%xq} = Thesetof interior points

B = {Xui» ---» Xy} =  The set of boundary points

The centers x; used in Eq. 4 and 5 are chosen as
collocation pomts. The previous substituting yields a
system of linear algebraic equations which can be solved
for seeking coefficient ¢ by rewriting Eq. 4 and 5 in matrix
form as:

Ac=F )

Where ¢ = (c,, ..., ¢y is the coefficient vector, F = (f(x,),
oo ) 2 s X, A = (A, A is the NxN
matrix, (A =Le(|x-x|)Li=1,. . N,j=1, ., Nand (Ay).=
Me(|x=x|),i=N+1, ., N,j=1, .., N The unknowns ‘¢’
can be obtained by solving Eq. 6. Therefore, the
approximated solution of problems as expressed m at any
points in Eq. 1 and 2 the domam can be obtained by
substituting ¢, into Eq. 3.

The Centroid-Node Adaptive Meshless (CNAM) method:
When an automatic node adaptive algorithm is performed
properly the resulting node distribution is expected to be
optimal for the problem at hand because the solution is
used to determine where more nodes are needed.
Therefore, it is one of the primary goals of using node
adaptive methods that we aim to reduce the numerical
error in the digital solution with minimal numerical cost. In
thus study, we proposed a simple but rather effective node
adaptive algorithm where the areas of interest where lugh
errors are expected are identified via a sumple error
indicator defined as follows.

Definition 2.2: Let u;,(t) be a numerical solution obtained
by using the collocation method at time t and at the node
in the domam with coordmate (1, ). The error mdicator,
noted by B, is defined as:

Fyy = (A" [V (7

where A, = AxAy = the volume weight w =1, |.| is the
Euclidean norm and the gradient V.
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Definition 23: Let N be the number of the
uniformly-distributed nodes in the computational domain
Q and E;; be the error indicator at noede (i, j). The
normalized error indicator, ¢, | is defined as:

E, .
——.1,]=1...,N (®)
max{F, |

L]
Definition 2.4: Tet N be the number of the
uniformly-distributed nodes in the computational domain

Q and e, be the normalized error indicator at node (i, j).
Then an area of interest is the subset, Qkc Q). defined by:

e . =0, (9

L1

Q =1

where 0, the threshold provided by the user and the
areas of interest are the union of €, k =1, ..., N. The
solution gradient V is numerically computed using the
central-finite difference. The normalization means, Eq. 8 is
needed to prevent the algorithm from producing a strong
change of the raw values of solution during the
computation which would necessitate a readjustment of
the refine threshold 8,. The CNAM algorithm is carried
out simply by marking the node of interest with a
specified value of 8,, based on the normalized error
indicator, e, ; that has been obtain using u_,(t). Then, it
refines the node in such a way as described m Fig. 1. The
way to msert additional nodes when a refinement process
takes place is done using the centroid of a triangle that
contains the node of interest itself and the two nearest
neighbor nodes before the approximation and collocation
process of the meshless method 13 then repeated to get a
new set of solution, u_ (t) using the solution at the
previous time step as the initial condition (i.e, u ; (t-At)).
This 13 where the name of Centroid-Node Adaptive
Meshless (CNAM) comes from.

Computation details

Implementation for convection-diffusion problem:
Consider the goverming partial differential equation of
convection diffusion problems expressed as:

a_u_a ﬂjLﬂ +B a_u+a_u =R
ot | axt oy’ x Oy (10)

(x,y)e QcR",t>0

Where:

®,p = The diffusive term and convective term,
respectively

R = Describes source or sinks of the quantity u

In steady state case, the convection-diffusion Eq. 10
is reduced to the following form:

L] L] L] L] L] L I e ™ . - L] -
. " . .
R L T T T
. 8,8, .
! ‘
. . . . . L ] . L . ] .

Fig. 1: a-d) Centroid-node adaptive for uniform node
distribution; assuming the node in the middle of (a)
1s marked and subjected to refinement procedure

2 2
o Lo O ] pye Qe R
ox' oy ox gy
an

In thus practice its boundary condition 1s of dirichlet
type as follows:

u=0o0n9dQ (12)

In order to implement the RBF collocation procedure
Eq. 1-3, 6 and 11 it is necessary to solve the following
linear system:

Folls ) Follsx))
aXZ ayZ
. =Ri=1..N
EJ:‘10] ] a(p( X, _XJ'H) .\ a(p( X, -XJH) 1 1
dx dy

(13)
Yoee(lxx|)=oi= N LN 09

This system can be written in the form of:

Yo o[ -dviel Vo] Ri=1..N, (5

¥ o0, =0 =N+, N (16)

The approximate solutions then can be obtamed by
substituting the coefficients ¢, obtained by solving the
above system in Hq. 3. In time dependent case, Eq. 10 is
may be written in the form of:

du =LuinQ (a7
dt

where L 13 an operator. Equation (17) 1s discretized in
space with meshless method and then it 1s written in the
system of ordinary differential equations as follows:

du
il (18)
& Fu)
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RESULTS AND DISCUSSION

Numerical demonstrations and general discussion: The
methodology mmplemented as detailed in the previous
section is now tested out by applying to four examples.
The results provided by the method proposed in this
research are validated agamst both the corresponding
exacts and those from other numerical studies 1f available.

Example 1: As the first test case, we consider the
Franke-type function (Driscoll and Heryudono, 2007)
in [-1, 17> which has been used by many authors to test
the RBF interpolation:

fix,y)=e "' (x +y e ™ (x-0.5) +
(y-0.5)1)e 7 (x+0.2)* +(y+0.4)" )+ (19)
e ((x+0.8) +(y-0.8)")

The CNAM 15 applied to this function to firstly
demonstrate its general figure of performance. The node
distribution began with that shown m Fig. 2a and the
final node distribution after using CNAM is depicted in
Fig. 2b. The solution contours and surface, together also
with its corresponding node distribution are shown in
Fig. 2¢ and d, respectively. It 1s clear that CNAM can
perform well for this first test case.

F(x,y)

Example 2: In this case, we consider the following
potential boundary value problem (Libre et al., 2008) in
the rectangle domain Q = [0, 17

d'u  d'u
+
o’ oy

=[x, y)EQ (20)

The analytical solution 1s given by:
0™ = tanh(a(y-(v+x)) 2h

where a=15,v = 0.4 and u =0.2. Table 1 contains error
obtained by CNAM when measured using the same norm
of error expressed as:

S o)
Zil(ufxact )2

Relative error norm =

It is seen that CNAM is capable of numerically
reproduce the solutions that are 1 a very good agreement
with the exact. Figure 3 shows the comparison of solution

surfaces obtained from using CNAM alongside with it’s
resultant node distribution (Table 2).

Fig. 2: Overall performance of CNAM for the Franke-type; a) equation with 289 imtial nodes and b) 1,117 final nodes
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Table 1: Error comparisons between non-adaptive conventional solution and adaptive node solution using CNAM at different numbers of initial nodes
and with 8, = 0.4; (RMSE: Root Mean Square Frror, MAXE: Maximum Error)

RMSE MAXE Rel.err norm
No.of initial nodes Conventional CNAM Conventional CNAM Conventional CNAM
25 1.27E-01 8.73E-02 5.95E-01 5.65E-01 1.06E+01 7.24E+00
49 4.64E-02 1.36E-03 2.64E-01 1.11E-02 3.84E+00 1.13E-01
64 1.74E-02 6.43E-04 9.12E-02 4.25E-03 1.44EA+00 5.33E-02
81 1.27E-02 2.27E-03 8.78E-02 2.70E-02 1.05E+00 1.88E-01

Table 2: Relative error norm (Rel.err norm)obtained from employing the
CNAM algorithm with different M() shape parameter oand levels
of refinement at 8, = 0.2

Level of
o-MQ refinement Fnode Relerrnorm  C-Time (sec)
4.5 2 435 2.7907 1.1377
5.0 2 446 1.2914 1.1227
5.5 2 446 07729 1.1638
6.0 2 446 04802 1.2060
6.5 2 446 03174 1.1947
6.7 2 446 02771 1.1220
5.5 3 597 0.9087 2.2365
6.7 3 602 0.2524 2.6741
7.5 3 602 0.1928 2.7373
7.5 4 T64 0.2003 4.9538
8.2 4 764 0.1807 5.0613

Here with 169 initial node/conventional nodes which yields the
Rel.err norm = 2.8417 and requires 0.0654 s of C-time (Fnode: the number
of final nodes, C-Time: computational time)

u(x,v)

u(x,v)

Fig. 3: Solution surface comparisor; a) Exact; b) CNAM

Example 3: A benchmark 2D steady state of
convection-diffusion problem (Gu and Liu, 2006) is
focused on m this example. The govermng equation 1s as
follows:

L(w)=v" V" (DVu)+ fu —q(x) = 0inQ (23)

The problem domain is (x, y)e £ = [0, 1]x[0, 1] and the
coefficients m Eq. 23 are:

e 0
D= {0 €:|,V :{B—X,4-y}and[3 =1

m which ¢ 13 a given constant of diffusion
coefficient. The boundary condition are considered as
Ulyogucryonyo1 = 0. The exact selutions for this problem
is given by:

u = sin(x)[l-e—z(la_x) ]yz [1_6_2(18'3/) } (24)

It should be, first of all, stated that this classical
example is one of the challenges for any numerical
methods proposed in literatuire. With its boundary layer
formation taking place at the domain corner this is
well-known to cause mstability m solution process.
Table 3 provides the relative norm error, Eq. 22 as also
used by Gu and Lui (2006) who investigated this problem
and concluded that with the diffusive coefficient e,
getting smaller the more difficult it becomes to reproduce
the boundary layor with high accuracy. In particular it is
clear from Table 3 that when the problem becomes
convective-dommated, 1.e., £ = 0.001 the relative error can
reachup to 195.345 while CNAM can dramatically improve
the solutions and noticeably reduce the relative error
down to 9.557 which 1s absolutely remarkable.

In comparison with non-refined conventional node
distribution, 1t can be seen from Table 1 again that without
CNAM the error is approximately 100 times higher than
that with CNAM.

Figure 4 clearly shows the effectiveness of the CNAM
algorithm where the solutions are impressively mmproved.
At different levels of convective force in the system it is
shown m Fig. 5 that with smaller £ more nodes are
involved in the process as expected. The highest number
of nodes generated by CNAM 1s 1.382 and can produce
the solutions with as low as 10.8922 in relative error norm.

Example 4: As the final example, we investigate the
problem under the unsteady state (Driscoll and
Heryudono, 2007) which the following governing Eq. 25:
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Table 3: FError comparisons between non-adaptive solution (Conventional) and adaptive node solution (CNAM) at different numbers epsilon Eq. 23 and with
B4 = 0.4 and 441 internal initial/conventional nodes

Gu and Liu (2006) Conventional CNAM
£ Rel.err norm Rel.err norm Time (sec) Rel.err norm Fnode Time (sec)
100 000,245 00000.0033 0.2240 00.0175 1708 2.6467
10 000,255 00000.0035 0.2108 00.0072 1776 2.0629
1 000.346 00000, 0064 02112 00.0079 1996 6.0984
0.1 001.276 00000.1980 0.2206 00.5571 600 34350
0.01 015.832 00351.9199 0.2424 06.9518 583 0.8907
0.001 195.345 00885.8930 0.2235 09,5576 854 1.3838
0.0001 - 10139.6916 0.2103 10.8922 655 1.2594

¢S
"\::“:‘:‘
e
PaSTRIES

25
S
T

u X y)
o v oA

2

Fig. 5: Node distributions obtained from applying the CNAM; a)e=0.1;b)£=0.01; ¢) £ = 0.001 and d) £ = 0.0001

6880



J. Eng. Applied Sci., 12 {Special Issue 5): 6884-68091, 2017

u(xy)

u(xy)

Fig. 6 Solution and its corresponding node distribution
when using the CNAM algorithm at time t =1 sec;
a) with 441 initial nodes and b) with 961 imtial
nodes

2.00E-0. 17 ,
—+-Conventional

- CNAM
-o-Exact

L]
‘a

1.50E-0.14

1.00E-0.11

5.00E-0.24

0.00E+00——— M annap :
0 0.5 I

tasee

184
-

Fig. 7. Comparison of solution on the x = y straight line,
obtamed from the CNAM algorithm with the
vertical axis beng the solutions

2 2
ELOP ICUINCL IR IR (25)
ot ox  dy axt oy’

Tts exact solution is expressed as:

(x-0.8t-0.5Y
ox 0.04(4t+1) (26)
4+l _(y-0.8t-0.5)°
0.01(4t+1)

uix,y,t) =

where (xy)e D = {0.53<x, y<2}, t € (0, T) The initial
condition and the boundary condition comes from
the exact solutton. For time-dependence problems,
CNAM 1s set to perform at the last time step. Figure 6
provides different final node distributions produced
at different initial nodes. The obtained
from using CNAM are noticeably superior to those with
non-refinement/conventional nodes as clearly displayed
inFig. 7.

solutions

CONCLUSION

In this study, we propose a new and simple method
of node refinement algorithm designed specifically to
apply i conjunction with the RBF-collocation meshless
method. The idea 13 based on space-gradient of solution
acting as the error indicator where the node of interest is
refined following the centroid idea of a triangle. We
named this algorithm the Centroid-Node Adaptive
Meshless (CNAM) method and demonstrated its
capability with some well-known and rather benchmark
examples, both steady and time-dependence states. All
solutions obtained using CNAM are validated agam other
numerical work, corresponding exacts and also those
obtained without CNAM (or with conventional nodes). Tt
has been clearly shown from all examples that CNAM is
capable of reproducing some challenging physics
phenomenon such as boundary layers with satisfactory
level of accuracy. The limitation of the current version of
CNAM is however, to deal with non-uniformly distributed
nodes and this 15 to be our further development.
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