Tournal of Engineering and Applied Sciences 12 (Special Issue 5): 7057-7062, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Program Statement Parser for Computational Programming Feedback

128, Suhailan, 'S. Abdul Samad, ‘M. A. Burhanuddin and *A .. Nazirah
'Faculty of ICT, Universiti Teknikal Malaysia Melaka, 76100 Melaka, Malaysia
*Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin,
22200 Terengganu, Malaysia

Abstract: Programming skills can be trained by doing lots of computational programming exercises. Such
practice does not only strengthen the understanding of a programming language syntax, but also developing
the skills of problem solving using computer’s logics. Unfortunately, automated feedback in rectifying problem
solving difficulty is costly to be built due to the diversities of question’s requirement. Among popular methods
to support such feedback are through dynamic testing, solution template and intelligent agents. However, these
approaches require additional resources to be prepared in advance of training session. Thus a simple and
immediate method to associate feedback with current programming answering difficulty is addressed in this
research. It enables each line of computer statements that having semantic mistake to be mstantly associated
with live expert’s feedback using program-statement parser. Experiment was done using 793 solution attempts
of mn answering a computational programming question. The results show that feedback can be quickly
provided on specific program’s statement. Although the expert's feedback was only provided on 1% of the
overall programs’ attempts, the same feedback was successfully replicated up to 33% of the total programs’
attempts that contain similar mistakes. This approach can be considered efficient as it does not require
feedback’s resources to be prepared in advance on each computational programming question. Furthermore,
1t provides mechamsm to support expert’s live feedback that can be provided during a lab session mnto a
reusable automated feedback.

Key words: Automated computer assessment, programming feedback, Semantic error, text-based parser,

Malaysia

INTRODUCTION

The assessment of a computational programming
solution is commonly done by using dynamic testing
approaches (Helminen et al., 2013; Kurnia at al, 2001,
Tang et al., 2010; Papancea ef al., 2013; Denny ef al,
2011). Test cases are used to execute a program using a
certain mput with an expected output. Based on
mismatches of the test output, a feedback can be
produced to the user to highlight the mistake. However,
as the approach does not evaluate the program structure,
the feedback may not be sufficient to highlight the errors.
On the other hand, semantic parser is an analysis of the
code structure based on its meamng or logics of specific
solution goals or requirements. In order to represent a
requirement of specific problem-solving exercise, solution
template is commonly used to validate the correctness of
a computer program. The solution template is a sample of
the computer program that solves the problem-solving
exercise. Such template will represent basic structure of
computer program semantic solution that will be used to
match student’s computer program in providing specific
feedback. The earlier version of solution template
approach uses syntax tree parser to find mismatches

between a computer program and a template such as
PROUST (Johnson, 1990), GOES (Sykes and Franek, 2003),
JITS (Suarez and Sison, 2008), MEDD (Gulwam at af.,
2014) and EML (Vaessen et al., 2014). The discrepancy
between them can be reported as a feedback to guide
which part of the computer program need to be revised.

Many of the researchers that use pre-defined solution
template strategies claim that the highest success rate in
helping student solving programming problems are
achieved. Although, such approach guide students
towards to the correct answer, this kind of feedback may
not be effective in the context of learning outcome. This
15 due to the nature of template matching that may be
abused by using trial and error strategy to get closer to
the solution and finish the exercises without really
understand the reason why the error has occurred
(Tam, 2011). Furthermore, syntax-based parser tends to be
costly to be built especially in satisfying varieties of
computational problem’s specification (Naser, 2008).
Usually, more than single solution template is required on
a single question especially i supporting the diversity of
correct solution logics.

Other approach for computational programming
feedback is by using intelligent agent as a tutoring system

Corresponding Author: S. Suhailan, Faculty of ICT, Universiti Teknikal Malaysia Melaka, 76100 Melaka, Malaysia
7057

J. Eng. Applied Sci., 12 {Special Issue 5): 7057-7062, 2017

(Berdu et al., 2008; Mungunsukh and Cheng, 2002;
Norams end Azvan, 2013; Rafique et al, 2011,
Mungunsukh and Cheng, 2002; Song et al, 1997).
However, this approach requires a controlled environment
that must be well defmed m advanced. If a new
environment such as new computational programming
question is to be added, the agent needs to be trained
with additional efforts. Thus, it 1s not suitable to have
a dynamic feedback that can be tailored to a dynamic set
of computational programming question that will kept
changing from time to time.

In order to decrease workload in preparing
pre-designed feedback on each computational
programuming exercise, this study proposes an approach
that enables programming feedback to be provided in real
time during online lab session.

MATERIALS AND METHODS

Semantic mistakes: In computational programming
exercises, many students may experience with
semanticdifficulty. Although, language syntaxes are
common errors among students, however, this kind of
errors can be rectified by them after having compiler’s
automated feedback. Feedback is very important to help
users to identify their computer statement’s errors or
mistakes. Meanwhile, semantic errors are more related to
illogical meaning of a programming language (e.g.,
semicolon after condition of a selection, usage of single
equal symbol in a comparison) or requirement inaccuracy
of a specific question (e.g., inaccurate of looping counter,
mmprecise of matching condition and mismatch of output’s
format). These kind of logical errors that depend on
specific question’s requirement are difficult to be
designed into a compiler due to the uniqueness of the
question. Without any errors reported based on question
requirement, debugging may get harder even after all the
general logic’s requirement 13 already satisfied.

Debugging a complete but unaccepted program tends
to be difficult especially when the program is free from
syntax errors but then failed to be accepted. Thus 1s due to
unsuccessful output after it was tested with unrevealed
test data. If the test data was not revealed to the end
users, they may think the automated system 1s unreliable
because their program has successfully acquired a correct
output when tested with their own input data. When this
happens, they can become frustrated and wondering
about the test input. However, in certain case if test input
was revealed to the end users, there might be a probability
to cheat the system by manipulating the expected output
especially when the system was designed based on
output matching acceptance.

This study provides a flexible approach to associate
feedback on semantic errors of specific computational

programming exercise. Expert’s workload can be minimized
by elininating solution template and test cases
requirement. The feedback can be provided during a lab
session or anytime and it will be automatically re-activated
as an automated feedback for future similar semantic
mistakes.

Program-statement parser: The proposed method does
not require solution template to be provided by an expert.
However, an expert need to amalyze unsuccessful
programs that were submitted online. Based on these
programs, the expert needs to select certamn computer
statement that contains mistakes. Then computer
statements will be automatically translated into features in
the forms of digits, programming symbols (e.g., operators,
bracket), keywords (e.g., data types, reserved words) and
default library function or method (e.g., println, readint).
Algorithm 1 shows the program-statement extraction rule
on the mistake statement to be associated with the
expert’s feedback. The algorithm will parse the selected
statement by reading each character and eliminate
unnecessary characters to become a generalized pattern.

Algorithm 1: Program statement extractor (STRING:

statement)

1 Begin

2 N-Size of selected statement.

3 8 ~List of language symbols

4 K-List of language keywords

5 R-null

6 i-1

7 While (i<N)

8 BRegin

9 C = character at location-i

10 If C-S Then

11 R=R+C

12 Else

13 BEGIN

14 Rtemp-null

15 d-i

16 While (d=N)

17 Begin

18 C = character at location-i
19 Rtemp = Rtemp+C

20 Cnext = character at location-(i+1)
21 Tt Cnext 8 Then
22 Begin

23 Tf Rtermp—(K || digit) Then
24 R =R+Rtemp
25 i=d

26 Break

27 End

28 d++

29 End

30 End

31 it

32 End

33 End

34 Return R

For an example of program-statement extraction rule,
consider the following Java program:

7058

J. Eng. Applied Sci., 12 {Special Issue 5): 7057-7062, 2017

Java program:
inty=>5

int x = input.next()
if (>y)

y=10

if g = 5)

x=19

O Lh B

In line-2, the rule will be extracted as “int =next();”
and associated with an assisted feedback notifying to use
“nextInt()” for reading an integer input. Then, in line-3, the
rule will be extracted as “if (>)” and associated with
assisted feedback notifying that semicolon is not needed
at the end of an if statement condition. While in line-5, the
statement can be extracted as a feature-statement rule of
“if (= 5)” to be associated with assisted feedback alerting
that double symbol of “==" needed to be used for
comparison instead of single “=". Alternatively, expert
user still can modify the automated extracted rule such as
by removing the number (e.g., “if (=)”) so that the rule
will be more general. In order to retrieve the feedback for
the specific computer statement’s mistake, each line of the
computer program needs to be converted into program-
statement rule as 1. Then, it will search for any matches of
previous program-statement rules. If there are matches,
the corresponding of previous assisted feedback will be
recommended to the user.

Table 1: Program-statement feedback rules

RESULTS AND DISCUSSION

This experiment is meant to evaluate the effectiveness
of the feedback in delivering feedback based on
program-statement rule of computer program’s mistake.
It 1s evaluated based on its capability to extract
computer program’s statement for a feedback message.
This program-statement feedback rule was experimented
on the computer programs submission of year 2013
and 2015 covering 475 and 318 of computer programs,
respectively. The programs were submitted by first-year
computer science student while answering a
computational programming question. The question
required participant to write a program to read a string
input, replaced each of the input characters except the
second character into an asterisk and then printed the
new string format. By having online submission of a
computer program, an expert can choose unsuccessful
program and then select any computer statement that
contain mistakes. The selected statement will be
automatically translated into program-statement rule.
Then, the expert user can provide a feedback to be
associated with the rule in guiding towards meeting
problem’s specific requirement. Based on tlus dataset,
feedbacks were provided by an expert user on 8
computer’s statements from 7 participants of year 2013.

Program Program-statement rule Feedback

Scanner k = new Scanner (System.in)
Stringay at =k.next()

for (inti = 1;i<ayat. length ();i++){
if(it = 2){

Systemn. out.print (“*”)

for (int = 1;<length ();++){

elsef
System. out.print(ayat. charAt (1))

}

Scannerk = new Scanner (Systemn. in)
String messages = k.next()

for (inti = 0;i<messages.length (;T++){

For loop should start with 0

Use double = to compare,

if(i=1f

System. out.print (messages.char At (1)) not a single =
if (=1){

}

else{

Systern.out. print(" *"

}

Scanner k = new Scanner (System.in)

String a =k.next()

for(int i =0; i<length; i++) {

num|i] = k.nextInt () [1= next Int ();

message. charAt (0)
System. out. print(“p’)
elseif {

Systemn. out.print (“*”)
)

3

for(int i=a.length-1; i>=0; i--) {
System.out.printin{num{i])

H

Note: Symbol [] was manually
removed by the expert to make
the rule more general

This question does not require
to read integer the input

7059

J. Eng. Applied Sci., 12 {Special Issue 5): 7057-7062, 2017

N 126 | 1
24 | o None
i | feedback
404 55
i | o Program-
statement
| 192 i 23 feedback
71 12
T T T 1
2013 2015 2013 2015

(a) Programe (b) Users

Fig. 1: Feedback coverage on total programs and users

Table 1 shows some examples of provided feedback
of computer program’s statement. This feedback was
tailored to guide end users with the correct usage of the
statements towards meeting the specific requirement of a
computational programming question. As an example,
computer program mn the first row, the feedback was given
to lughlight the correct mitialization value for an adequate
looping number without changing the existing structure
of end user’s computer statements. Meanwhile, the
second row of computer program, although no syntax
errors were reported to the end user, this assisted
feedback has managed to highlight the mistake of the
assignment operator (=) usage in the condition
statement.

Figure 1 shows the statistics on the mumber of
feedback output based on the provided feedbaclk input.
Figure 1 shows that, 71 and 192 of submitted computer
programs were successfully assisted with the feedback in
year 2013 and 201 5, respectively. In term of participant’s
coverage, 12 and 23 participants were assisted with
feedback as shown in Fig. 1. As the feedback were
provided to 8 users only, others 3 and 22 unattended
participants were successfully gam the same feedback of
the expert’s feedback in year 2013 and 20135, respectively.
Thus, the proposed feedback technique has efficiently
replicating the expert’s feedback mput as recommended
feedback output to the end users.

Meanwhile, Algorithm 2 shows some examples of
automated feedback retrieval based on previous expert’s
feedback. The full list of the feedback result on computer
program submission of year 2013 and 2015 can be
downloaded at hittps:/figshare.com/s/942f6ad60982d
658a834.

By analyzing the full feedback result of year 2013 and
2015, many users were unaware about their mistake even
the same feedback was given repeatedly to the end user
on each of their program submission. One of the
participants with 1d-456 has submitted 19 computer

programs and 7 out of them were having an input

statement mistake. He was using a method to read an
integer type input while the question requires a string
type input. The user may not alert about the mistake since
his submissions on 4 November, 2015 from 10:06:31 am to
10:40:07 am were repeating the same mistake in reading a
string input. If this feedback was implemented during
the lab session, the student could be notified earlier
regarding the mistake and probably could solve the
problem more quickly.

Algorithm 2: Feedback based on program-statement

rules:

Program ID: 456
2015-11-04 10:06:31
0 Import java-util-*
1 Public class App{

2 Public void static main (8tring [] args)
34

4 Scanner yana = new scarmer (Sy stern-in)
5 String k = yana-nextInt ()

==RF: This question does not require to read
integer input

6 Char [] =b =k.to Charr Array ()

7 Character [] characters = new
characters [b.length]

8 For (int i = 0; i<b. length; [++)

e {

10 Characters [1] =b =[i]

11 if (characters [i] ! = characters [1])
12 {

13 System-out-print Tn (+4°7)

14)

15 Else

16 {

17 Systermn-out-print In (characters [1])
18

19)

20 }

21

Program ID: 467

2015-11-04 10:40:45

0 Import java-util-Scarmer

1 Public class Hangman_Question{

2 Public void static main (String [] args) {

3 Scarmer in =new Scanner (Systern-in)
4

5 String word = in-next)

6 /fchar sentence = in next char ()

-

8 For (inti= 0, [<=word-length (); ++) {
=>RF: Use condition of character locaton<
length. Not <= of length since last character is
stored at length-1 location

9 Tf (sentence-charAt (i) == charAt (1)}
10 Systemn-out-print In (charAt (1))
=>=RF: charAt (1) need to be used with string
variable

11 Else

12 Systemn -out-print In (“*7)

13

14

15}

16

17 3

18}

19

7060

J. Eng. Applied Sci., 12 {Special Issue 5): 7057-7062, 2017

In another example, a computer program with id-467
was containing a syntax error of “cannot find symbol of
method char At (int)” that provided by a normal Java
compiler. This feedback message may not be easiy
mterpreted by a novice user especially when topic on
programming method was not yet covered. Alternatively,
when specific recommended feedback was implemented
during the lab session, this syntax error can be
rectified by showing the correct way of using the
char At () as a string’s method.

Many of such statement mistakes were not part of
compiler’s roles as it was related to the specific
requirement of a question (e.g., inadequate number of
loop, mismatch of output formatting and semicolon after
selection's condition). As a result, no feedback on the
solution’s mistake was given to the users as the program
could be compiled successfully. Thus, this feedback was
signficant in helpmng them to spot the “hidde” mistake
and avoid them from being guessing the errors especially
when an automated submission system has rejected their
solution.

CONCLUSION

Among common approaches to provide automated
feedback on computational programming question are
dynamic testing, solution template and intelligent agents.
However, these approaches not only costly to be built but
requires additional workload that need to be prepared
from an expert on each computational programming
question. This research is using a text-based parser by
associating feedback with a filtered computer statement
that contain semantic mistakes. Tt enables an expert to
provide instant feedback based on current student’s
program submission that contain mistake on certain line
of codes. Such feedback was later used as an automated
feedback based on mistakes of similar selected computer
statement’s pattern. As computer statements may relate
on each other, extending extraction of computer statement
to be based on variable accessibility scope 1s another
1ssue to be taken care in the future. It also will be more
effective if expert’s feedback can be provided in general
in highlighting missing of required instruction logics in a
computer program. This feedback can be possibly
associated as automated feedback through program
sinilarity technique.

ACKNOWLEDGEMENTS

This research has been supported and funded by
Faculty of Information and Communication Technology,
Center of Research and Innovation Management (CRIM),
Universiti Telmikal Malaysia Melaka and Mimstry of
Higher Education (MOHE) Malaysia under SLAI
scholarship.

REFERENCES

Berdu, I.., T. Andre, A. Amandi and M. Campo, 2008.
Assisting novice software designers by an expert
designer agent. Expert Syst. Appl., 34: 2772-2782.

Demy, P., A L. Reilly, E. Tempero and J. Hendrickx, 2011.
CodeWrite: Supporting student-driven practice of
Java. Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, March
09-12, 2011, ACM, Dallas, Texas,
ISBN:978-1-4503-0500-6, pp: 471-476.

Gulwani, 5., I. Radicek and F. Zuleger, 2014. Feedback
generation for performance problems in introductory
programming assignments. Proceedings of the 22nd
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, November
16-21, 2014, ACM, Hong Kong, China,
ISBN:978-1-4503-3056-5, pp: 41-51.

Helminen, ., P. Thantola, V. Karavirta and S. Alaoutinen,
2013. How do students solve parsons programming
problems? Execution-based vs. line-based feedback.
Proceedings of the Conference on Leaming and
Teaching n Computing and Engineering (LaTiCE),
March 21-24, 2013, IEEE, Macau, China,
ISBN:978-1-4673-5627-5, pp: 55-61.

Tohnson, W.I., 1990. Understanding and debugging
novice programs. Artif. Intell., 42: 51-87.

Kumia, A., B. Cheang and A. Lim, 2001. Online judge.
Comput. Educ., 36: 269-315.

Mungunsukh, H. and Z. Cheng, 2002. An agent based
programming language learning support system.
Proceedings of the International Conference on
Computers in Education, December 3-6, 2002, TEEE,
Auckland, New Zealand, ISBN:0-7695-1509-6, pp:
148-152.

Naser, S.A., 2008. An agent based intelligent tutoring
system for parameter passing in java programming. J.
Theor. Appl. Inf. Technol., 4: 585-589.

Noranis, M.T. and N.S. Azuan, 2013. A multi-agent model
for mformation processing in computational problem
solving. Intl. J. Model. Optim., 3: 490-494.

Papancea, A., J. Spacco and D. Hovemeyer, 2013. An
open platform for managing short programming
exercises. Proceedings of the %th Annual
International ACM Conference on International
Computing Education Research, August 12-14, 2013,
ACM, San Diego, San Califormia,
ISBN:978-1-4503-2243-0, pp: 47-52.

Rafique, U, S.Y. Huang and C.Y. Miao, 201 1. Motivation
based goal adoption for autonomous intelligent
agents. Proceedings of the ITEEE-WIC-ACM
International Conferences on Web Intelligence and
Intelligent Agent Technology Vol. 2, August 22-27,
2011, IEEE, Washingtor, USA.
ISBN:978-0-7695-4513-4, pp: 54-57.

E

7061

J. Eng. Applied Sci., 12 {Special Issue 5): 7057-7062, 2017

Song, 1.S., S.H. Hahn, K.Y. Tak and I.H. Kim, 1997. An
intelligent tutoring system for introductory C
language course. Comput. Educ., 28: 93-102.

Suarez, M. and R. Sison, 2008, Automatic
construction of a bug library for
object-oriented novice Java programmer errors.
Proceedings of the 9th International Conference
on Intelligent Tutoring Systems, June 23-27, 2008,
Springer, Montreal, Canada,
ISBN:978-3-540-69130-3, pp: 184-193.

Sykes, ER. and F. Franek, 2003. An mntelligent tutoring
system prototype for leaming to program Java.
Proceedings of the 3rd IEEE Internaticnal Conference
on Advanced Learning Technologies (ICALT’03),
July 9-11, 2003, IEEE, Athens, Greece,
[SBN:0-7695-1967-9, pp: 1-5.

Tam, K., 2011. Debugging debugging. Proceedings of
the TEEE 35th Annual Conference on Computer
Software and Applications Workshop, July 18-22,
2011, IEEE, Munich, Germany,
ISBN:978-1-4577-0980-7, pp: 512-515.

Tang, CM., Y.T. Yuand C.K. Poon, 2010. A review of the
strategies for output correctness determmation in
automated assessment of student programs.
Proceedings of the Conference on Global Chinese on
Computers in Education (GCCCE), June 01-04,
2010, City Umniversity of Hong Kong, Hong Kong, pp:
584-591.

Vaessen, B.E, F.J. Prins and I. Jeuring, 201 4. University
students’ achievement goals and help-seeking
strategies m an intelligent tutoring system. Comput.
Educ., 72: 196-208.

7062

	7057-7062_Page_1
	7057-7062_Page_2
	7057-7062_Page_3
	7057-7062_Page_4
	7057-7062_Page_5
	7057-7062_Page_6

