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Abstract: The problem of online processing node fault detection in mesh-connected multicore and many-core
VLI multiprocessors is considered. A novel hardware-level approach to the multiprocessor test based on
mutual inter-processor checking is presented which presupposes that a coordinated healthy/faulty decision
15 made for each processor core by applying the majority operator to the individual healthy/faulty tags
calculated by the corresponding set of testing neighbors. Formal rules are defined for forming sets of testing
and tested neighbors for each processor node of the mesh which are invariant to the location of the node within
the mesh and to its dimension. The formulae to determine the number of testing neighbors for each node
depending on the dimension of the mesh are given. A parallel hardware-level algorithm implementing the
proposed test method is presented and its possible hardware implementation is discussed. The successful fault
detection probability is evaluated in the case when the proposed approach is used, its dependencies on the
individual test node reliability are investigated. The proposed approach is shown to provide increased
successtul fault detection probability compared to the traditional self-checking and neighbor-checking for all
practically significant cases.
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INTRODUCTION

VLSI multiprocessors multicore and many-core (VST
MPs) are a highly efficient solution for implementing high
performance embedded systems, combining fine-grain
concurrency with decentralized and logically distributed
architecture (Anonymous, 2015a, b; Vangal et al., 2008).
Increasmg complexity of VLSI MPs becomes a problem
because the probability that, a processor nede or a link in
a multiprocessor may appear faulty (defective) grows
relatively hugh as the number of processor nodes
spite  that,
manufacturing technologies have reduced the defect
densities, a relatively low VLSI MP fabrication yield is still
an issue (Ciciani, 1998; Kolonis et al., 2009).

A VLSI multiprocessor containing defective nodes
(and links) can be made healthy as a whole subject to a
dedicated defect detection and isolation mechanism is

increases. In continuous  advances 1n

employed. Despite that, the overall performance of the
multiprocessor degrades, it may be considered defect-free
(Jigang and Srikanthan, 2003; Fukusli and Horiguch,
2004). If a certain redundancy, e.g., a set of spare nodes 1s
mtroduced and specific methods are used to make it

possible to detect and logically replace defect nodes with
spare ones (Takanami, 2001 ; Roychowdhury et al., 1990;
Lin et al., 2009) then the VL.SI MP may be treated as
defect-free and retains its performance at the same time. In
both cases, a multiprocessor with physical defects is
logically reconfigured and VLSI MP fabrication yield loss
is reduced as a result.

For successful VLSI MP logical reconfiguration,
it 18 1mportant that every faulty node 1s properly
detected and 1solated to let the rest of the
multiprocessor  operate, possibly with  slightly
decreased performance. This problem 1s typically
solved based on the usage of self-checking and
neighbor-checking methods, both hardware and
software-level (Tafri et al, 2014; Rajski et al, 2004,
Aguilera et al., 2000; Nicolaidis and Anghel, 1999;
Zhang et al., 2014; Bernardi et al., 2014; Psarakis et al.,
2010; Krstic et al., 2002; Stroud et al., 2004; Raik and
Govind, 2012). These techniques allow detecting both
manufacturing defects and local faults and they are a
suitable solution to provide online core/link fault/defect
detection. However, relatively low testability 1s the
mam problem of the above approaches because no
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coordination between test units of different processor
nodes is camried out to pinpoint faulty cores; yet,
checking algorithms may miss some faults/defects and
sometimes they treat healthy nodes as defective. To
alleviate the above problem the mutual inter-node
coordinated test can be employed, meaning that each
multiprocessor node 1s checked by some other nodes and
the final healthy/faulty decision i1s made based on a
certain formal cooperation rule which takes into
account the local decisions made by particular test nodes
(Al-Azzeh et al., 2015). This approach 1s developed in the
present study.

The aim of the manuscript is to expand the VLSI
multiprocessor mutual inter-node test method initially
presented by the researchers in (Al-Azzeh ef al., 2015). In
the study, we formally state the mutual inter-node test
approach for the d-dimensional VI.ST MP architecture
which makes it possible to concurrently detect
faulty/defective nodes across a mesh-commected VLSI
multiprocessor. A parallel inter-node test algorithm 1s
presented based on the proposed formal approach and
dedicated test hardware implementing the above algorithm
15 diagrammed and briefly discussed. At the end of the
study, we demonstrate that the mutual mter-node test
environment provides increased testability compared to
the self-checking and neighbor-checking techniques.

The mutual inter-node test approach: The key 1dea of the
mutual inter-node test is that, each processor node (core)
of the multiprocessor is periodically checked by a subset
of its physical neighbors (so called “testing neighbors™)
and at the same time, this processor node tests another
subset of its physical neighbors (so called “tested
neighbors™) and the final faulty/non-faulty decision for
each processor node is made based on the majority
operator result obtained from the individual results
returned by the testing neighbors.

The set of “testing neighbors™ for each processor
node 1s formed depending on the number of dimensions
(d) of the VLSI multiprocessor topology and it should
satisfy the odd cardinality requirement to make the
majority operator applicable to produce the final
healthy/faulty decision. The same applies to the formation
of the set of “tested neighbors™, except that the
cardinality of the set may not be odd The process of
mutual inter-node test is carried out simultaneously
m all the processor cores across the mesh so
that, a faulty signal i1s simultaneously transferred to
the physical neighbors of the corresponding faulty
processor node which makes it possible to efficiently
1solate {or replace) faulty/defective nodes m a tumely
manner.

The mutual inter-node test mechanism may be
considered as an advanced form of neighbor-checking
because the operability of the test hardware itself 1s
implicitly tested. For example, if one of the testing
processor nodes produces a wrong healthy/faulty
decision, then the tested node (which is in fact healthy)
will not be necessarily detected as faulty by mistake as
the resulting faulty signal i1s formed by the majority
operator applied to a set of individual fault detection
signals. This means that the mutual inter-node test
mechamsm’s testability 18 better compared to the
traditional  self-checking and  neighbor-checking
techniques. A more formal demonstration is shown at the
end of the study.

The formation of testing and tested neighbor sets: The
formation of testing and tested neighbor sets is
one of the key problems in the organization of mutual
inter-node test. In this study, we provide formal rules to
define these sets for a VLSI MP of arbitrary dimension
d=2.
Let us first consider a 2-dimensional multiprocessor.
Let U = {u,} be the set of its processor nodes (cores)
where x and vy are coordinates (indexes) of a particular
node in the mesh in the horizontal and vertical
dimensions, respectively, x = 0,n-I, y=0,m-1 with m and n
standing for the number of rows and columns of the mesh,
respectively. Let C, and K, designate the sets of tested
and testing neighbors of processor node u,, respectively.
Then for given arbitrary xe {0, 1, .,n-1} andy = {0, 1, ...,
m-1}, we can formulate the following rules (Eq. 1 and 2):
C, = (1

=Y {u(xﬂ)mndn,y’u(x+1)mndn, (y+1)mndm’ux,(y+l)mudm J

K - Wty e {tsignta-1)> s (1-signcnd)aet ) v+ {1-sign(y)Jm-1)? )

=y
u[x+(1—s1gn(x))n71),y

Equation 1 and 2 take into account the fact that
leftmost, rightmost, topmost and bottommost processor
nodes have fewer physical neighbors than those located
in the other parts of the mesh. For example, a topmost
node has no neighbor above, that’s why, its tested
neighbor set should mclude the bottommost node m the
same column The same applies to a leftmost node that
has no neighbor on its left; its testing neighbor set should
include the rightmost node in the same row. Figure 1
illustrates the rule 1 and 2 in detail.

If set K, is defined for each processor node u,,, then
the faulty/non-faulty decision may be made according to
the following rule:
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Fig. 1: The formation of tested and testing neighbor sets
in a 2-dimensional mesh multiprocessor
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where # denotes the majority operator, ¢,*" = 1, if node
u,, “is considered” healthy by node u,, and ¢ ;7 =0,
otherwise where x’, y™ are the placeholders standing for
the corresponding upper indices in Eq. 3. According to
Eq. 3, node u,, is treated as faulty and needs to be
isolated from the mesh, if @, = 0.

The rules 1-3 may be easily extended to mesh
topologies of higher dimensions. For example, for
a 3-dimensional multiprocessor they could be formulated
as follows:

1 1 1

(X+1)mndn,y,z’ X(y+1)mudm,z’ x,y(z+1)mndp’
c u(xﬂ)mudn(yﬂ)madm,z’ (4)
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where m, nand p are the sizes of the mesh in the X, Y and
7 dimensions, respectively. To define setsC and

K, ..., for a general case d-dimension mesh, it is
necessary to extend Eq. 4-6 by adding extra properly
indexed elements (u and @) in all possible combinations.
The d-dimensional case formulae are not stated here for

complexity reasons. One can prove that:

C

], Ry, - Ey

=d(d-1)+1 7

= ‘le,xz,...,xd

Thus, ‘le,xp....xd =1(mod2) - L.e., each processor node
has an odd number of testing neighbors that makes it
possible to apply the majority operator to produce
the resulting healthy/faulty flag. According to Eq. 7, the
number of testing neighbors in 2-dimensional meshes 1s
minimal: [K,| = 3. In a 3-dimensional array, each node has
K| = 7 testing neighbors.

MATERIALS AND METHODS

The mutual inter-node test procedure: The process of
mutual inter-node test may be represented as a parallel
algorithm including a set of threads B, B, ... By
where thread B, defines a test statement sequence
corresponding to tested neighborv,;, . (Fig. 2). The
algorithm applies to a VL.SI MP of any dimension d=2.
The algorithm mn Fig. 2 mcludes the mam test loop
which executes while the corresponding processor node
(which is meant to be v, ., . ) is considered healthy by its
testing neighbors Kus... (condition 3). As another
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Fig. 2: Flow-chart of the mutual inter-node test algorithm

loop begins, a new test signature T**-*(k) 1s formed
(statement 7) which is simultaneously transferred to
tested neighbors Cors ne :Ll:ll,x)} “ } (statement 8). After all
the tested neighbors ve returned corresponding
response signatures {R"i"i: v*é(k)} (statement 12) a decision
is made by the processcr u, . ., whether a particular
tested neighbor v, . is faulty or healthy (condition 14
and statement 15).

The algorithm i Fig. 2 consists of 3 mam
sections, A-C (the dash lines). Section A is necessary to
spin 1°% clock ticks until the next test loop begins
and another test signature T**-*(k) gets ready for
transfer. Section B is responsible for transferring the test
signature to tested node v, . . and performs counting
1" clock ticks until a response from the tested processor
1s supposed to arrive. Section C first controls the arrival
of test response R%* -%(k) from node v, . and then
generates reference test response R+ (k) to comp are
it to pt#-i(k) If the above are equal, then tested
neighbor v, . 1s assumed to be healthy, otherwise it 1s

1

considered faulty and the partial faulty/non-faulty

decision flag @77 is reset to zero. This flag is then used
in Eq. 3-6 (depending on the value of d) to produce the
final decision flag €z, .

The meaning of the symbols used in the flow-chart of
Fig. 2 1s presented in Table 1. In the algorithm diagrammed
in Fig. 2, much work is done in parallel which makes it
possible to concurrently test processor nodes across the
entire mesh. All the conditions and statements of the
algorithm are simple enough to be mnplemented in
hardware which additionally contributes to the mutual
inter-node test environment performance. Yet, the
test/response signature mechanism used m the presented
algorithm allows configuring test actions performed by
tested neighbors taking into account the test

complexity/duration tradeoff.

The mutual inter-node test hardware: The mutual
inter-node test algorithm of Fig. 2 may be directly
presented as a hardware-level implementation. The logic
diagram of the embedded test hardware constructed
according to the above algorithm is shown in Fig. 3.
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Table 1: The meaning of the symbols used in Fig. 2

Symbols Meanings
o The number of test signatures supported by processornode u_ |

¥ Mg 95 Hgse o By
k k 0,k 1 Test signature counter of processor node u_

Ay The interval (in clock ticks) between two adj aceitt test loops

1:,] Next test loop wait counter
% =1 d(dd1)H The maximum time needed to form a test response by tested processor node u %,
'cl, i=Ld(d1)+1 Test response wait counter Pt
Tt k) kth test signature supported by processor node v
R () Test response signature issued by tested processor node u 5 o after e *(k is receiv_eq
R (k) Thereference test response signature expected to be issued by processor node Ui after receiving 2. .x (k)

T“R,Ra

Temporarily used variables
The value assignment/transfer operator

Table 2: The functions of the nodes and gates presented in Fig. 3

Nodes or gates

Functions

Memory node 1

Circular binary counter 2
Circular binary counter 3
Flip-flop 4

AND gate 5

AND gate 6

NOR gate 7 together with univibrator 9
OR gate 8

Univibrator 10

Memory node 11

Circular binary counter 12
Flip-flop 13

Flip-flop 14

Comparator 15

Stores the test signatures issued by the processor node

Counts the clock pulses arrived between two adjacent test loops performed by the processor node
Points to the next test signature in memory 1 to be issued by the processor node

Indicates whether counter 2 has zeroed or not

Stops clock pulses from arriving at counter 2

Stops clock pulses from arriving at counter 3

Detect whether counter 2 has reentered the zero state

Necessary to OR the pulses clearing flip-flop 4

Produces a pulse which forces the NTUs to start operation

Stores the reference response signatures for the tested neighbors of the current processor

Counts the clock pulses arrived until the corresponding tested neighbor sends a response signature
Indicates whether counter 12 has zeroed or not

Indicates whether the corresponding tested neighbor is currently healthy or faulty

Compares the test response sent by the tested neighbor to the comresponding reference test response read
from memory 11

AND gate 16 Stops clock pulses fiom arriving at counter 12
AND gate 17 Stops reset pulses from arriving at counter 14
NOR gate 18 combined with univibrator 20 Detect whether counter 12 has reentered the zero state
OR gate 19 Necessary to OR the pulses clearing flip-flop 13
Univibrator 21 Produces a pulse to clear flip-flop 14
Clock
‘El--n-!u
8
Reset

V4o ko ¥z o

s 4o |-

Fig. 3: Logic diagram of the embedded test hardware implementing the algorithm of Fig. 2

The device of Fig. 3 is supposed to be a part of each

Processor node;

it consists of the
d(d-1)+1 Neighbor Test Umts (NTU). The device core

executes the initial and final sequential threads of the
mutual mnter-node test algorthm while NTU, implements
thread B i=1,d{d-1)+1 (Fig. 2). Taking mto account the fact

device core and
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that the NTUs are identical, only NTU, is detailed in
Fig. 3. The adopted input/output mumbering scheme helps
understand the cormections between the device core and
the NTUs. The functions of the nodes and logic gates
shown in Fig. 3 are detailed in Table 2.

RESULTS AND DISCUSSION

Comparing the mutual inter-node test approach to
self-checking and neighbor-checking: The mutual
mter-node test approach 1s a good alternative to the
self-checking and  neighbor-checking  techmiques
providing better multiprocessor testability which is
demonstrated in the present study.

Let m(t) be the probability that a processor node of
the multiprocessor 1s properly detected as faulty by a
separate test node (NTU). Taking into account that there
are C, = jlil{j-i)! possible combinations of testing
neighbors correctly reporting that the current processor
1s faulty, the following formula can be deduced:

1.6()

0.9
=08

P}y
:

PR)IT()

1.0 T T T T
0.5 0.6 0.7 0.8 0.9 1.0
=0

Fig. 4: a) P(t)|n(t) versus d and b) P(t)|m(t) versus m(t)
graphs for fixed m(t) and d, respectively

i i dfd-1)-i+1
cd(d.1)+1n(t) |:1_T':(t)] (8)

Equation 8 gives the probability P(t) that a processor
node is properly detected as faulty subject to the mutual
inter-node test approach is employed.

To evaluate the effect provided by the mutual
inter-node test, we assume that m(t) equals to the
probability of successful self-test or neighbor-test (we
presuppose that each processor has a built-in NTU or
similar hardware to check its or its neighbor’s state) and
then calculate P(t)/m(t) depending on d and d with fixed
n(t) and d, respectively (Fig. 4).

The graphs m Fig. 4 demonstrate that the mutual
inter-node  test approach 1s effective as long as
n()e[0.6;0.9] If mw(t)-1 or w(t)~0.5 then P(t)/n(t)-1, thus
the effectiveness gracefully degrades. Owr approach
provides mimmal effect for 2-dimensional multiprocessors
(8-12% better than self-checking and neighbor-checking
with n(t)e[0.6;0.9]). If more dimensions are added, then
with w(t)e[0.6;0.8] it is possible to get 20% or more
effectiveness growth. Note that mn(t) = 06 1s
approximately the point of maximum effectiveness as the
number of dimensions increases.

CONCLUSION

In the present study,
new  approach, the
mechanism which makes it possible to improve testability
of mesh-connected VLSI multiprocessors by mcreasing
the successful fault detection probability with respect to
traditional self-checking and neighbor-checking. We have
shown that, our approach 1s applicable to multiprocessors
of arbitrary dimension, yet, its effectiveness grows hugher
as the number of dimensions increases which is important
for future generation VL.ST MPs. The mutual inter-node
test techmque allows hardware-level testing of all the
processor nodes across the mesh in parallel, thus,
significantly contributing to the test environment
performance.

we have presented a

mutual  inter-node  test
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