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Abstract: Objective of the present research is the proof of the Differential (generalized) Reciprocal Relations
(DRR) between streams J, and their moving forces X, more general, than Onsager-Cazimir’s relations and
applicable not only to relaxing systems but also to the systems making useful work mdependence whether they
are linear or not. Object of research 13 most the general class of spatially non-umform systems not submitting
to hypothesis of local equilibrium and to principle of linearity and supposing simultaneous flowing in them of
a thermo-mechanical, thermo-electric, thermo-chemical, electro-magnetic, thermo-galvano-magnetic, etc.,
processes of transfer and transformation of energy. Primary results of research 1s essential expansion of area
of applicability of Onsager-Cazimir’s reciprocal relations by their reception as consequences DRR, backgrounds
of their fairness at inconstancy of basic kinetic coefficients T; and demonstrations of their applicability to
processes of useful transformation of energy. In study is new more brief way of proof DRR and their
universality; a conclusion to their basis of Maxwell’s equations; application DRR to a finding of the diagonal
form of transport laws by simplification of a method of a finding of superposition effects without use of kinetic
coefficients L; in them with its propagation on non-stationary processes. The practical importance of the
received results consists in generalization of methods of non-equilibrium thermodynamics in expansion of
scope DRR on non-linear systems and processes with any degree of dissipativeness in a finding of the diagonal
form of laws of transfer in the further reduction of number of kinetic coefficients in them from n (n+1)/2 up to
n and in creation of preconditions for development the theory studying kinetics of energy transformation
processes.
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INTRODUCTION

The rise of engineering interest in phenomena at the
mterface between various disciplines and perception of
their close relation with the phenomena of the energy
dissipation led to creating, in the early 20th century, the
thermodynamic Theory of Real Process rate (TIP). This
field in macroscopic physics of the 20th century was
named the theory of irreversible processes (Denbigh,
1951, Meixner, 1954; Fitts, 1962; De Groot and Mazur,
1962). It has emriched the theoretical mind of the 20th
centwry with a number of general physics principles and
notably contributed to cognition of the in-depth
mterrelations between different-type phenomena. Its
contribution was appreciated by two Nobel prizes
awarded in the field (Onsager, 1931, Prigogine, 1947).

But this theory was based on a hypothesis of local
equilibrium and a principle of a mimmum of entropy
production in stationary processes and consequently did
not reach completeness and the severity which is peculiar
to a classical thermodynamic method (Groot, 1951; Bejan,
2016; De Groot and Mazur, 1962). Besides it was limited to
studying purely dissipative processes and did not

consider processes of useful transformation of the energy
which are the principal object of thermodynamics
(Sandler, 2017, Kondepudi and Prigogine, 2014; Ness,
2015). The last has been caused by that the basic
operational values of thus theory-thermodynamic forces
¥, and fluxes T, are determined in it as derivative from
entropy S that does not take into consideration reversible
component of real processes which as is known, does not
influence it. As a result of it an vast region of processes
with relative efficiency above zero fall out of TIP
competency.

Meantime kinetics of those processes interests not
only power engineering and energy technology for which
energy transformation and are basic TIP-method are the
most acceptable m principle. The thermodynamic
investigation of biological systems is also impossible
without useful worlk against equilibrium supporting the
non-equilibrium state of such systems and providing their
vital activity. The application of thermodynamics to
cosmological objects that develop, according to current
ideas, bypassing equilibrium would also be incomplete
without work considered as ordered form of exchange. All
that begets a problem of enlarging TIP to mnclude the
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systems performing some useful work. In this study
consistently thermodynamic decision of this problem is

offered.
MATERIALS AND METHODS

The researcher has selected the thermodynamic
method, leamng on properties of full differential of some
functions of a condition (mainly energy). Tts specific
character in the given particular case consists in
generalization of the basic equation of thermodynamics
by mtroduction of missing extensive parameters of spatial
heterogeneity Z, which derivatives on time give sireams
T, and thermedynamic forces X, as derivative of energy
oen Z;.

The existing quasi-thermodynamic theory of relaxation
processes: More than centenary had passed before, it
became clear that “thermodynamics unaware of time”
(to a Bran’s figurative locution) was substantially
thermostatics wherein only Fourier’s, Navier’s, Ohm’s,
Fick’s, Darcy’s, Newton's, etc., equations prefigured the
coming theory of non-static processes. However, the
development in that direction demanded introducing in
thermodynamics the transfer concepts intrinsically
extraneous for it. One of these belongs to Umov who
wrote the law of conservation of energy in terms of the
energy flow across the stationary borders of the
system. The flow concept in application to entropy
became another stride. Note, that application was quite
novel because of the statistic-mechanical interpretation of
entropy as a measure of state probability for which the
transfer concept is absolutely senseless. A little bit later
De Donder related the entropy source with the rate of the
chemical reactions with its affinity. That was how the
concepts of flow and process rate started their
introduction into thermodynamics.

Most the decisive step in this direction has been
made only in 1931 by Onsager (1931). Tt has constructed
his theory of physicochemical process rate based on the
expression for the entropy generation rate having thus
emphasized the rreversible part of real phenomena. The
entropy S of a closed adiabatic isolated system in
equilibrium state 1s known to be maximal. If the parameters
®, 0, ..., 0, differ from their equilibrium values by a
value of o, o, ..., o, it 13 naturally to assume that the
difference between the entropies of the current S and
equilibrium S, states AS 1s a some function of «;. In
this case the reason of the i th scalar process generation
(the scalar thermodynamic force X)) and the generalized
rate of relaxation process (named by Onsager the flow T))
could be found from the expression for the entropy
generation rate:

ds/dt = =, (98/00 Yo /dt = £.XJ, (M

Where:
X, =(98/9a,); 1, =da,/dt

Thus, L. Onsager endued the force X, with a meaning
quite different from that m Newton’s mechanics and
construed it as a parameter measuring the deviation of a
system from internal equilibrium. At the same time L.
Onsager postulated that for mmor deviation from
thermodynamic equilibrium any of the flows I, obeyed the
law of linear dependence on all the thermodynamic forces
¥, active in the systemn:

I =%L Xx(i,j=12, ...n) (2)

Onsager referred to those laws of relaxation
processes as well as the associated coefficients L, as
“phenomenological” (1.e., practice-based). Such a (matrix)
form of kinetic equations differed from Fourier’s, Ohm’s,
Fick’s, Darcy’s, etc., laws by the presence of additional
terms (with subscripts 1#]). The non-diagonal summands
in expression (Eq. 2) were introduced by Omnsager to
allow for various “superposition” (interrelation) effects
of different-type processes  running
simultaneously m the same spatial zones.

The proof of reciprocity relationships between the
“non-diagonal” phenomenclogical coefficients L; and L;
(i#j) was most important in the Onsager’s theory:

irreversible

L =L (3)

These symmetry conditions are called the reciprocal
relations. They reduce the number of the coefficients L,
to be experimentally defined from n (for mere empirical
description) down to n(n+1)2 (where n-a number of
independent flows) and lead to setting up a before
unknown relationship between the rates of different-type
irreversible processes. Onsager obtained those famous
relationships based on a known statement of statistical
mechanics regarding the reversibility of micro-processes
in time under the assumption that the coefficients 1; and
L, were constant while the subscript-dissimilar flows J,
and J; were linearly independent and became zerc with
disappearance of the forces X, and X, These three
statements outstep the framework of thermodynamics.
Therefore, he named it “quasi-thermodynamics™. Onsager
was afterward awarded the Nobel Prize for lus studies
that field. Those studies attributed to non-equilibrium
thermodynamics just as much as the R. Clausiu’s studies
to the making of classic thermodynamics. They have
embodied the odds and ends of concepts and facts
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representing them in an accessible and understandable
form. Their publication made a good start to the mtensive
development of the TIP m macroscopic and statistical
physics. Casimir (1945) extended the Onsager’s theory to
cover vector processes, having herem proved that in case
the ¢ and P-type forces (even and odd time functions)
acted simultaneously, the reciprocity relationships (Eq. 6)
would go over into the anti-symmetry conditions:

L.=-L 4)

A little bit later Prigogine (1947) based on Curie’s
symmetry law showed that in case the scalar and vector
processes ran simultaneously, only the processes of the
same (or even) tensor range could interact (superimpose).
That allowed further solving a number of problems
associated with the evolution of non-equilibrium
systems.

The mterest in that field of knowledge was caused not
only by its general theoretical significance but rather its
umportant applications having been outlined i the forties
and fifties and having involved the thermal diffusion
isotope separation, the allowance for additional terms in
the hydrodynamic equations for missile art and plasma
physics, the development of membrane technique,
biophysics, etc.  The
phenomenclogical and statistical TTP has advanced the
approximation of the heat-mass transfer theory to

development  of  the

hydrodynamics, electrodynamics and  continuum
mechanics. It appeared to have been especially useful
to study phenomena at interfaces between those
disciplines.

However, those theories never did eliminate the
abovementioned lme of demarcation between
thermodynamics and the heat transfer theory. The reason
is that the TTP is restricted to studying the dissipation
processes like heat conductivity, electric conductivity,
diffusion as well as effects of their superposition but does
not deal with the processes of useful energy conversion
which are the
thermodynamics. This is the reason why the necessity

appeared to call thermodynamics into being as a umfied

main object of investigation in

theory of energy transfer and conversion rate and
capacity (Etkin, 2010} which wnbke W. Thomson’s
“pseudo-thermostatics” 1 1882 and L. Omsager’s
“quasi-thermodynamics™ in 1931 would not “un-file”
reversible or irreversible part of real processes but would
cover the entire of its spectrum. For this purpose it is
necessary to pass to a finding of forces X, X; and flows
I, I, on more general basis supposing both increase and

decrease of energy of system.

RESULTS AND DISCUSSION

Generalization of irreversible thermodynamics on the
systems making work: Tt is known that in
thermodynamics full energy is subdivided on internal
1T and external E. The first depends on internal variables
0, (entropy S, Volume V, mass of kth substances M,
charge 3, etc.), ie, U=U (0, 0, ..., 0. The second
depends on position of system as the whole concerning
an environment, i.e. from radius-vector r of the center of
these values, ie, E=E (1, r,, ..., 1,). It means that full
energy of system as function of its condition looks
like ® =3 (0, 1)) and they exact differential be expressed
by the following identity (Groot and Mazur, 2013).

i=12,...,m
d>=Ty,de, T E-r, { J (5
1 =L2Z,..,m

Where:

P, =(09/28,) = The generalized potentials such absolute
temperature T and absolute pressure p,
chemical, electric, etc., potential

F,=«(39/0r;) = Forces mn their usual (newtonian) meaning

n, m = The number of the scalar and vector

coordinates describing a condition of
system

The fundamental identity (Eq. 5) represents result
of joint defimitions of parameters Y, @, and F, 1; and
conmsequently 1s valid regardless of what causes the
variation of the parameters ©, and 1, either the external
energy exchange or the internal (including relaxation and
anti-relaxation) processes. Last 1s made against
equilibrium in system in processes “ascending diffusion’
active transport in biosystems, polarization of substances,
self-organizing of systems, etc. Therefore, Eq. 5 is
applicable to any processes (both reversible and
ureversible). The work described by second sum of Eq. 4
may be external or mternal (depending on where the
forces arise either in the system itself or outside) useful or
dissipative (depending on what the work involves either
purposeful conversion of energy or its dissipation);
long-range or short-range (depending on radius of
action); mechanical, thermal, electrical, chemical, etc.,
{depending on nature of the forces to overcome).

Thus research dW,” any jth sort, described by
members of second sum (Eq. 5), maybe expressed as
through usual forces F, and replace d r, and through
parameters of non-equilibrium state X; and Z;:

AW =% F-dr, =% X;-dZ, (6)
Expression (Eq. 3) can be copied in the form,

containing full derivatives on time t from parameters of
systermn:
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da/dt =3 v, d8/d-ZF v, 9

Here, v, = dr/dt the generalized speed of jth process
connected with common concept of a vector stream J; of
value ©; by a simple parity I, = Oy, Owing to this
generality and the concept of thermodynamic force X
gets umiform sense of specific force X= F/@, and
expression X.J; capacityes of jth process N, = X, I, = F,v;.
Owing to such method of a finding of streams I, and
forces X they get uniform sense, uniform analytical
expression and a umform way of a finding.

Unlike expression (Eq. 1) where work X I; is especially
positive, in expression (Bq. 6) capacity N, maybe both
positive and negative that conforms to fulfilment of work
or system or above system. It does an assessment of
efficiency of wvaried converters of energy quite
unequivocal, allows to distribute the theory of actual
processes to processes of useful transformation of energy
(Etkin, 2010).

The proof of differential reciprocal relations: From
Eq. 5 on the basis of the theorem about mdependence
mixed derivative from the order of differentiation
(F*B/2ror; = 0°9/dr; dr,) follows:

(9F/or,) = (9F /0 ) &)

This differential parity of thermodynamics can be
expressed in the generalized speeds of processes as
dr; = vidt and dr; = v,dt. Then after reduction dt instead of
(Eq. 7)1t 13 possible to write:

(9F ov ) =(aF /av,) ©)

Parity (Eq 9) can be expressed in terms of
thermodynamic forces X, X and streams J,, J;:

(X, /00 )) = (9X,/31,) (10)

These parities have been received by us earlier in
more complex way and named by differential reciprocal
relations (Etkin, 1989). Rysselberghe (1963) was the first
who postulated the existence of such-type relationships
and proposed to name them the “generalized reciprocity
relationships”. Tt is simple to show that the Onsager’s
symmetry conditions ensue directly from these differential
relationships for a particular case of linear systems. In
fact, applymmg (Eq. 10-2) one can obtaim:

(170X, )= 1L, = (97 /9X,) =L, (11

Thus, the famous Onsager’s reciprocal relations
ensue as a corollary of more general differential
relationships of thermodynamics and do not need
involving whatever statistic-mechanical considerations.
However, utility of these parities is not settled at all by a
possibility to replace with them the Onsager’s symmetry
conditions. Becomes obvious that the generalized
{differential) reciprocal relations do not depend on a type
of phenomenological laws. Tt gives to them the status of
conditions of involved “from the outside” for short circuit
of system of its equations (sumilarly to the equations of a
condition in thermodynamics). In that case limitation or an
inaccuracy of these equations concerns not bases of the
theory and only its consequences depending from them.
This independence of reciprocal relations (Eq. 10) from a
hypothesis of local equilibrium and a principle of linearity
allows to distribute OIP to the nonlinear systems making
useful work (Etkin, 2010).

The specific form of such equations is established,
naturally, by experiment Linear phenomenological
Onsager’s laws with constant coefficients L; represent
only their special case. The majority of actual processes
of transfer (thermal conductivity, electric conductivity,
diffusion and viscous friction, described by Fourler’s,
Ohm’s, Fick’s and Newton’s laws, etc., are quasi-linear as
a phenomenological coefficients L; in them depend on
temperature and other parameters of a condition

It 1s essentially important in this respect that parities
(Eq. 10) are satisfied and in that case when in Eq. 2 are
constant only “non-diagonal” coefficients L; (i#j). It
essentially expands area of applicability of Omnsager’s
symmetry conditions and explains, why they are justified
far outside fairness of those assumptions which have
been laid in the basis of their statistic-mechanical
background. Very important that at L,# const from
(Eq. 10) can receive so-called “additional” parities of
reciprocity between diagonal L; and non-diagonal L
phenomenological coefficients (Gyarmati, 1960):

(L, /9X,) = (AL, /0X,),G # }) (12)

Moreover, reciprocity relations (Eq. 10) appear fair as
1t will be shown below and in that case when composed
the right part (Eq. 2) have a different sign that is
characteristic for processes of transformation of energy
and leads to Cazimiu’s parities, instead of Omnsager’s
symmetry conditions.

Finally, parities of reciprocity (Eq. 10) appear fair and
for essentially nonlinear systems with exponential kinetic
laws as well as for systems for which these laws at all
have no the matrix form Eq. 2. All this does parities
(Eq. 10) reliable tool in hands of researchers, allowing
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them not only to reduce number of coefficients L; as a
subject of expenimental defmition but alse to make sure in
a correctness of the used equations of transfer and the
physical models put in their basis.

Anti-symmetry of reciprocal relations for processes
of inter-conversion of energy: Let’s consider any power
wstallation in which ith form of energy will be transformed
to jth. Tt means, that brought to it (initial) and allocated
from it (transformed) capacity have a wvarious sign
(N; = X, I<0; N ;= XjI=0). In that case the kinetic
equations of processes the relaxations (Eq. 2) postulated
by L. Onsager, make room for phenomenological laws of

a type (Etkin, 2010):

=L, X -L, X, (13)
=L XL, X (14)

Such character of laws of transformation of energy
well 18 1illustrated on an example of the transformer in
which a flow of primary energy carrier T, (the electric
current on an input n its primary winding) will be
transformed in the beginning to a magnetic flow in its core
and then restores the form n a secondary winding with
other number of coils and other parameters. Thus, as is
known, current J, decreases when force X increases and
becomes minimal in so-called “no-load” operation”, when
(I, = 0). On the contrary, J, increases, when X, decreases
(with approximation to “a mode of short circuit”,
where X; = 0). Inthe similar image a flow | (for example,
the current in a secondary winding of the transformer)
increases with increase of a pressure on primary winding
X, and with a power failure on secondary winding X,

If non-diagonal ceefficients of proporticnality L; and
L; in these equations are constant, application to them of
differential parities of reciprocity (Eq. 10) leads to the
conditions of anti-symmetry (Casimir, 1945):

(O1./0X,) =L, = (01,/0X) =L, (15)

This circumstance throws fresh light on the origin of
the Cazimir’s reciprocity relationships L; = L; exposing the
undemeath meaning of the requirements for different
parity of forces with respect to time inversion. In fact, for
the dissipation forces not changing their signs with time
inversion (i.e., for the so-called “w-type forces™) the
Onsager’s symmetry conditions L; = L as shown above,
are valid. Whenever a part of these forces have the
reversible character (1e., refer to the “P-type forces™),
the Omnsager’s reciprocity relationships give place to
anti-symmetry conditions L, = -L;. At the same time the

consideration endeavored here shows that the
applicability of the Cazimir’s relationships 1s not actually
restricted to the different-parity forces (¢ and P-type)
case. In fact, let us assume dealing with energy
conversion processes of purely dissipative character.
Such are mn particular, thermal conductivity, electric
conductivity, diffusion and viscous friction described by
Fourier’s, Ohm’s, Fick’s and Newton’s laws and resulting
in only the substance and energy transfer. In this case all
terms of kinetic Eq. 2 describing vector phenomena have
the same sign X.JT>0 defined by their contribution to
dissipative function TdS/dt. In this case reciprocity
relationships (Eq. 11) defining value and sign of the
phencemenological coefficients L, in linear kinetic Eq. 2
give invariably positive values of the phenomenological
coefficients L,>0 in these equations and result in
Onsager’s reciprocity relationships L; = L.

So, for linear transfer processes of a purely
dissipative character the matrix of phenomenological
coefficients 1s always symmetrical However, if m a
transfer process useful (reversible) energy conversions
oceur, Le., work 1s done agamst whatever forces other
than dissipation ones, the reciprocity relationships
acquire other character. In this case phenomena of the
“ascending diffusion” type (transfer of components
toward their concentration increase), system ordering, etc.
are observed. These processes lead to gradients or
differences of temperature, pressure, concentration,
electric potential, etc., i.e., to deviation of the system from
the internal equilibrium state for some of its degrees of
freedom, whereas the system in whole is tending toward
equilibrium. As a matter of fact, thus 1s the nature of all the
so-called “superposition effects” the theory of irreversible
processes deals with. As we will make sure, hereafter, the
effects of such a kind bear anti-dissipative character. The
processes of useful conversion of the ith form of energy
into the jth one in various machines apply to these
effects, too. This substantially extends the applicability of
the anti-symmetrical reciprocal relations (Etkin, 1989).

Confirming of anti-symmetric reciprocal relations: Tt is
a matter of terest to confirm the anti-symmetrical
reciprocity relationships (Eq. 4) in reversible processes on
a wide class of the processes, submitting to the Maxwell’s
equations (Rysselberghe, 1963). For this purpose we shall
consider process of mter-conversion electric (index “e”)
and magnetic (index “m™) energy in system of type of
already mentioned transformer. If to neglect losses in this
process, the right part of identity (Eq. 5) will address in
zero. Representing for convenience members of its 2nd
sum through parameters of spatial heterogeneity 2, 7,
and X, 7, in their scalar form in view of a sign on work
we shall find:
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d>,=Xd7, - X,dz, =0 (16)

Thus, differential parities of reciprocity (Eq. 10) will
become:

(0X,/07,,) = (X, /7, (17)

Tet us consider a system consisting of a closed
electric circuit with an arbitrary length 2, and variable
(in general case) cross section f, which comprises an as
well closed magnetic circuit with a length £, and cross
section f,, variable thru the length. Tn this case in the
Eq. 14 X and X, represent accordingly electromotive
X, = JEd 0, and magneto-motive X,, = [Hd ¢,
forces (Rysselberghe, 1963) while I, = [(dD/dt)df;
Tx = [(dB/dt)df,; total fluxes of electric and magnetic
displacements, respectively, sometimes named the
“linkage fluxes” and traditionally represented by the
number of the lines of force linking the cross section of
the electric and magnetic circuits, respectively. Here, B, H
electric and magnetic fields; D, B vectors of electric and
magnetic induction.

Let us now change based on the Stokes theorem, in
the force equation X, = [E.d ¢, from the curvilinear integral
taken over the closed electric circuit with a length of ¢, to
the integral [rotE.df,, over the magnetic circuit cross
section fy;. In the similar way one can change in the force
equation 3, = [H.d2, from the curvilinear integral over the
closed magnetic circuit with a length of ¢, to the integral
JrotH.df, over the surface f, covering the electric
cirouit. Then 9X /0f,, = rotll; §¥,/Of, = rotll; &#*Z /L5t
ol jof, = dD/dt and &Z,/0f0t = oT,0f, = dB/dt
Substituting these expressions in reciprocity relations
(Eq. 11), we shall find:

rotE = -dB/dt (18)

rotH = dD/dt (19

These equations differ from the corresponding
Maxwell’s equations in that they contain the total time
derivatives of electric and magnetic induction vectors.
This 18 not a surprise since the primary equations of
thermodynamics (Eq. 4) contain the exact differentials of
vectors 1, To form Eq. 15 and 16 mto a more habitual
type, we shall consider that dD/dt = j+(ID/St ) where
1. = 0¥ = (v.V)D-conduction current caused by the free
charge transfer whereas magnetic analogs to the free
charge p, do not exist (VB = 0) and d B/dt = (aB/ot).
Reception of Maxwell’s equations as consequences of
anti-symmetric parities of reciprocity confirms fairness of
these of a parity and for an extensive class of the
processes, submitting to the mentioned equations.

Applicability of differential reciprocal relations to
non-linear systems: To make sure in fawness of
differential parities of reciprocity (Eq. 10) to the
interconnected chemical reactions, consider for example
the case of interrelated chemical reactions obeying the
Guldberg and Waage chemical kinetics laws). For this let
us apply to the class of ternary uni-molecular reactions

Onsager earlier considered. These reactions with
substances 1., M, N may be described by scheme:
LM (reaction 1); M e N (reaction 2); 20)

N e L(reaction 3)

This scheme describes a reaction mechamsm, 1.e., a
real chemical conversion process (Haase, 1969). The
above elementary reactions run with rates w .,
respectively, being expressed, according to the Guldberg
and Waage laws, by the following exponential kinetic
equations:

w, = o [1-exp(—A,/R,_T)] (21)
w, =m, 1 — exp(-A,/R_T)] (22)
w, =m,[1 - exp(—A, /R, T)] (23)

Where:
w, ;' = Rates of the corresponding direct reactions
A ; = Therr current affinities
R, = Universal gas constant

For the considered case the rates of the reactions and
their affinities are linear-dependent (1.e., represent a linear
combination of each others). At such conditions the
symmetry conditions are known not to be guaranteed
(De Groot and Mazur, 1962). Therefore, let us mitroduce
two new linear-independent rates:

W, =W, tw, W, =W, Tw, (24)

Two independent forces A, and A; correspond to
these rates which allows Eq. 21-23 to be transformed,
subject to the wvariance of the dissipation function
TdS/dt to the matrix form:

w, =L [1-exp(-A /R T) L [ 1 —exp(-A, /R T)]|
(25)
Ly =o/'+e, L, =, 'exp(-Aa/R,T)] ; (26)
L, =, 'exp(fAB/RmT)]; L,=w'ta,
Here:
L,=m+m,L,=m'exp(-A_/R_TII
L, = 'exp(-A,/R, T L, =+ o,

(27)
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Thus, a ternary reaction far from equilibrium may be
described by two non-linear kinetic equations with
linear-independent rates and forces. Here the coefficients
w,; bemg functions of temperature, pressure and
concentrations of  parent
corresponding reaction do not depend on its affimty. In
fact, the affimty A of any of the rth reactions 1s defined
by the relation between the rates of direct and reverse
reactions and does not depend on each of them
separately. Hence, chemical reactions are described by
exponential kinetic equations with phenomenoclogical
coefficients independent on forces.
generalized reciprocity relationships (Eq. 9) should be true

substances for the

In this case
having mn our case the form:

0w A, = dw,/0A (28)

To make sure they are valid, it 13 enough to
differentiate expression (Eq. 25) with respect to Ay, given
L, and L, independent on A, and to repeat the similar
operation on Bq. 26 with respect to w. The result will be
as follows:

ow_f0A, =ow, /0A_ =(mn, "R _T)exp(-A,/R_T)
(29)
It can be easily seen that with approaching
equilibrium, when A, ; are simultaneously tending to zero,
relationship (Eq. 29) goes over into known Onsager’s
symmetry conditions for chemical reactions in the form:

L,=L, =w/R,T (30)

This example shows that the generalized reciprocity
relationships do not follow from the Onsager’s symmetry
conditions as usually considered but on the contrary,
these conditions themselves ensue from the differential
reciprocity relationships near equilibrium when the linear
approximation appears to be valid. It opens up additional
vistas in the thermodynamic analysis of chemical
technology processes and the evolutional problems of
biological and ecological systems.

The further reduction of number of phenomenological
coefficients: T.et’s assume, that the processes proceeding
i investigated system are mdependent or that we
consider only one process I, in it, for example, electric
current I, or diffusion of kth substance T, each of which
arises as i1s known, under action of several making I
residual force F, or F,. In that case differential parities of
reciprocity in Eq. 7 and 8 (3F/0v, ) = 0 and (0F,/0v,) = 0) as

they reflect interrelation of processes. The reference in
zero of differential parities of reciprocity means that
the generalized speed of any ith mdependent
process v, cannot depend on “Foreign” force I, so,
phenomenological laws of carry assume air this case more
simple:

J=LE =LZF =LY X (31)

where, L, the factor describing conductivity of system.
These laws are fair and in that case when flows J, and J,
are independent. Tt does not contradict the Onsager’s
postulate, according to which speed of any relaxation
process v, (named by it flow J) depends on all motive
forces X, operating in system. Such (diagenal) form of the
kinetic equations of transfer conform to laws conform to
laws Fourier, Ohms, Fick, Darcy and Newton in which the
unique motive force is replaced on resulting of all forces
X, operating in system.

However, m that case differential parities of
reciprocity m the Eq. 7 and 8 make room for the similar
parities connecting among themselves stream J, or J, with
components F; unique (resultant) of force F, = X F, = %
O, X Really, expression (Eq. 31) defines flow T as
function of thermodynamic forces X, allowing to consider
t hermodynamic parameters ©, as private derivatives
(d1/6X;). Thus, we also come to differential parities
(Eq. 10) that nonfirms fairness of phenomenological laws
(Eq. 31). According to these laws, flows J, disappears at
the reference in zero of resulting forces F,, 1.e., with the
reference in zero of the sum Y@, X It leads to ccourrence
of communications between components Fy; = 0, X
resulting forces F, which are however, consequence of
imposing not streams I, I, and forces X, X (that will quite
be coordinated with mechanics and electrodynamics).
Such “superposition effects” especially, simply to find,
if in system any two thermodynamic forces X, = -V,
and X; = V,; operate. Then, ®, X0, X, = 0 and between
forces X and X, there is the parity on the outside
reminding expression so-called “stationary superposition
effects™

(Ny,/Ny,) = -8,/8) (32)

However, now in the right part (Eq. 32) there are no
kinetic factors of type L; which appeared in expressions
of stationary effects in TTP (Haase, 1969):

(N‘Ifj /NS ) :7Lij/ L; (33)

Therefore, than them would be more proper to name
conditions of “partial equilibrium of ith sort” to similar
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conditions of thermal, mechanical and material equilibrium
in classical thermodynamics. Such situations when in
system one behind another processes proceeding in it
stop all are peculiar to all poly-variant systems. It sheds
new light an origin of numerous stationary effects in TTP
which maintenance of “order” due to external compulsion
and “entropy productions” now speak (Maxwell, 1881).
Expression (Eq. 34) allows on known parameters ©,
and ©), to predict not only character but also size of
these effects or on the contrary on their size to find a
number perameters of a condition not giving m to
measurement.

As an example of simplification of transport laws we
shall equations of multi-component
1sobaric-1sothermal diffusion for which Onsager (1931)
proposed the phenomenclogical laws of the kind:

consider the

I =-3L,Vu, (ij= 1,2,...K-1) (33)

Unlike (Eq. 32) this equation assumes that the flow T,
of any of the K-1 independent (emphasis added)
components of a system, nevertheless, depends on all
thermodynamic forces acting in the system which are in
the case of 1sobaric-1sothermal diffusion, identified with
the negative gradients of chemical potential of each of
such jth components p,. The additional (non-diagonal)
terms 1#] of the fust sum of this expression were
mtroduced by Omnsager to allow for the mterrelation
between flows which he used to explain the “ascending
diffusion”, viz. transfer of a substance in the direction of
1ts concentration mereasing. Since, the chemical potential
of any of the jth substances 1s a function of temperature
T, pressure p and concentration ¢, of the independent kth
compenents its differential du, at p, T = const features
exclusively its dependence on concentration which may
be expressed as:

du,; =T, (0u./dc, )de, =T, u, de, (35)

where, 1, is abrtuidged symbol for the derivative dp,/Je,.
Therefore, Eq. 34 containg a double sum of factors of
proportionality at concentration ¢, At existing methods
of experimental defimtion of fields of concentration of
impurity in metals and alloys it does practically the
important problem of a finding of not diagonal factors of
multi-component diffusion mn them not simply extremely
complex but also mathematic incorrect (Etkm, 1998).

In the mean time the same problem rather simply is
solved at record of the law of diffusion in Eq. 34 when
number F; includes a number of forces of concentration
diffusion X, = -Ve, and the role of parameters X, is carried

out with derivatives 1, = (Fu/d¢). In that case laws of
multi-component concentration diffusion assume air more
simple:

I =5 D, X ik 1=12,... . K-1) (36)

Here, Dy = 1, py, generalized diffusion coefficients.
This expression features much simpler form of diffusion
coefficients which consequences allow a direct
experimental check with the up-to-date means of
investigating diffusion in metals. One of
consequences 15 the sunple relationship between
coefficients of diffusion Dy, and thermodynamic factors of
diffusion p:

such

Dy /iy = Dy /iy, (37)

The relationship of such a kind was set up earlier by
of some assumptions by Brown and Kirkaldy (Etkin, 1993).
Owing to such expression of superposition effects
through thermodynamic variables we have the possibility
to predict an opportunity on known parameters ©, and ©,
not only character but also size of these effects or on the
contrary on their size to find a number of parameters
of the condition not giving in to measurement (Etkin,
1998).

However, the most important value of the parities
received here besides their generality consists first of all
that they allow to camry out the further reduction of
number of the kinetic factors L; which is a subject
experimental definition from n (n+1)/2 (in TIP) up to n.
Especially effectively such reduction for processes of
anisotropic heat conductivity and electric conductivity
in a magnetic field where all entire spectrum of the
thermo-resistive, thermo-electric, thermo-magnetic and
galvano-magnetic effects m the longitudinal and
transverse magnetic fields may be expressed using only
4 phenomenological coefficients. It is reached due to an
establishment of additional parities between the specified
effects. From five additional parities received at it the most
meamngful is the parity between effects of Righi-Leduc
and Hall, known earlier from the electromc theory of
metals as well as a parity between effects of Righi-Leduc
and Ettinshausen-Nernst, known as Wiedemann-Franz
law (Etkin, 2010). That these parities get the status of
consequences of thermodynamics.

Except for that, the differential relationships
between the state parameters and their functions enable
solution of also other problems. In particular, they allow
to count fundamental functions of a condition of system
of type of its energy on experimental data to find
with  which should satisfy physical
models of system or process to exclude cases missing or

restrictions

7877



J. Eng. Applied Sci., 12 {Special Issue 6): 7870-7879, 2017

superfluous number of variables of a condition, etc. In
particular, they allow calculating by experimental data the
fundamental state functions of a system, impose the
restricting conditions that should be met for each of
models. This always clarifies the models because allows
neglecting redundant or non-existent constraints.
Therefore, the differential relationships are a very
effective tooling of mathematical analysis conducted on
an object of investigation.

CONCLUSION

Unlike existing TIP, based a hypothesis of local
equilibrium, expansion of classical thermodynamics on
non-static processes of transfer expediently to begin
with generalization of its basic equation on spatially
non-umform systems with introduction n 1t of
concepts of time, speed and motive powers of actual
processes.

Introduction of parameters of spatial heterogeneity
of investigated systems 7, and X allows to distribute a
thermodynamic investigative method of the phenomena
of transfer to processes of useful transformation of
various forms of energy.

Refusal of allocation of an irreversible part of actual
processes and a finding of streams J, and forces X, on
more general basis, than “entropy production”, releases
from an indispensability of preparation of the bulky
“balance equations™ of weight, a charge, an mpulse,
energy and entropy investigated non-equilibrium
systems.

Mathematical properties of full differential of
non-equilibrium parameters allow to give consistently
thermodynamic background of differential reciprocal
relations, more general, rather than a Onsager’s symmetry
condition or a Cazimir’s anti-symmetry condition.

Onsager’s and Cazimir’s reciprocal relations result
from the mentioned parities n specific case the linear
systems, submitting to  submitting to linear
phenomenological laws with constant phenomenological
coefficients L.

The specified parities of reciprocity remain fair and in
that case when only not diagonal factors in its matrix
phenomenological laws are constant. It explains, why they
are justified and outside those restrictions which were
imposed by their statistic-mechanical background.

Differential reciprocal relations applicable to
processes of useful transformation of energy that proves
to be true by a conclusion to their basis of Maxwell’s
equations to which the wide class of converters of energy
submits.

These reciprocal relations are fair and for
essentially nonlmear systems that s proved on an
example of the threefold chemical reactions submitting to

exponential laws. Thus, differential reciprocal relations
pass in Onsager’s symmetry conditions in process of
approximation of system to equilibrium.

Application of differential reciprocal relations allows
to simplify phenomenological laws of trabsfer by a finding
resulting of thermodynamic forces X, operating in system.
Use of differential reciprocal relations for giving to
transport laws of the diagonal form allows to find
numerous “superposition effects” diverse processes as
result of the mutual compensation of making F; without
use of kinetic coefficients I, or L; a subject experimental
definition.

Varied of the “stationary effects” can be expressed
extremely through thermodynamic variables, getting in
this case sense of conditions of partial (current)
equilibrium.  These conditions reflect alternate
disappearance of flows J; in process of approximation of
system to equilibrium and consequently are fair and for
non-stationary conditions.

This method allows to find additional communications
between kinetic coefficients L; and by that to carry out
the further reduction of their number from n (n+1)/2 in OIP
up to n. Fairness of this position is confirmed on examples
of multi-component diffusion and the phenomena of
anisotropic heat-and electric conductivity in metals.

The adequate description of a condition of
non-equilibrium  systems in view of their spatial
heterogeneity allows to give reciprocal relations a strict
thermodynamic background that essentially expands area
of their applicability.
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