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Abstract: This study had solved the problem of reliability of production equipment with intelligent technical
condition diagnostics system. The purpose of the study 13 to provide an adaptive model of operational system
diagnostics and predicting of possible emergencies for electrothermal fumace based on the comprehensive
change of its diagnostic parameters. To achieve this purpose, we used methods of artificial neural networks,
fuzzy logic, expert evaluation and mathematical modeling. Based on the expert method and matrix planning of
fractional factorial experiment, we formed the base of fuzzy production rules for setting up and training of
adaptive diagnostic models of electric furnaces. It was found that ANFIS Model has the lowest value of the
relative electric furnace state error recognition. The practical implementation of the proposed model is realized
in the development of a production equipment diagnostics subsystem of the sintering floor at Novodzhambul
sky phosphate plant.
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INTRODUCTION

Modem operation and maintenance strategy of
complex technical meluding  Production
Equipment (PE), requires the improvement of reliability

facilities

estimate of the “actual state” under significant restrictions
on the different types of resources (Suleimenov et al.,
2014a, b, Tonov and Krasnyansky, 2012). The problem of
ensuring a high level of reliability and reducing the cost
of sintering production PE maintenance necessitates the
development and implementation of run time technical
condition diagnostic subsystems, allowing to search for
an impurity spot or equipment malfunction in order to
predict its reliability for a limited number of indicators
within a certain time.

Reducing the tine and cost for repawrs and
emergency recovery of yellow phosphorus production
process units will increase the efficiency of sintering
production through the creation and implementation of
the system of operative diagnostic of the actual state of
PE. The aggregates  for
acquiring of yellow phosphorus are different kinds of

main electrothermal

furnaces, the reliability of which 1s largely determined by

the diagnostic software, representing a set of interrelated
practices, rules, algorithms and tools needed to carry out
diagnostics at all stages of the object’s life cycle.

The diagnostics process of the electrothermal
furnace state is an important part of the sintering
production quality assurance system and is extremely
demanding as it requires time and the use of sophisticated
methods for determining individual diagnostic parameters.
In this case, the classical methods of technical
diagnostics, based on the use of physical means of
non-destructive testing and statistical data processing
algorithms, do not allow adapting to the changes of the
diagnosed object parameters and obtaining the necessary
information to control the electric furnace (Birger, 1978;
Yousif Yahya and Yahya, 2016). In addition, the problem
of obtammg reliable results, rapid diagnosis and
evaluation of the PE’s technical condition is complicated
by the fact that the presence of malfunctions in the
electric furnace 1s characterized by complex changes m a
variety of diagnostic parameters. To solve such problems,
at present, speialists widely use intelligent methods of
diagnosis and predicting nonlinear characteristics of
techmical objects based on neural networks and fuzzy
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modeling (Subbotin and Oleynik, 2008; Nguyen et al.,
2016). These methods are actually designed to build
reliable and adequate models, differing in properties of
adaptation to value changes of the diagnosed object
parameters which leads to the possibility of early
detection and prevention of PE malfunctions or
eINergencies.

Early detection of adverse technical state and
maintenance of high reliability of PE malfunctions rate
prediction evaluation for the next period of operation is
the main technical challenge of diagnosis (Parkhomenko,
2009). Techmcal diagnostics 1s a scientific field, based on
the methods of establishing effective recognition
algorithms, decision rules and diagnostic models to obtain
diagnostic information, automated momtoring and
troubleshooting m technical objects and systems (Birger,
1978; Uvaysov et al., 2014).

At present, the rapid development of information
technologies allows allocating a separate area of technical
diagnostics-intellectual diagnosis, based on the use of
neural networks and fuzzy systems of artificial intelligence
(Subbotin and Oleynile, 2008; Konstantinov et al., 2016;
Rutkovska et al., 2004; Bilski, 2014; Swedrowski ef al.,
2014; Huang, 2003; Bosenmuk et af, 1990). The
method of intelligent diagnostics generally includes
the following stages: construction of a priori PE
conceptual model, planming and conducting experiments,
statistical processing of the experimental data,
properties informativeness assessment and selection,
math modeling, optimization of the resulting model
(Subbotin and Oleynik, 2008). The choice of thistechmque
1s due to the expediency of getting both reliability ratings
predictions and ratings for PE controllability for a reliable
description of its technical condition and early detection
of failures and malfunctions, provided limited information
(for example, during operation or pilot testing).

The prediction of PE technical condition and
reliability can be carried out on various stagesof the life
cycle. At the same time, during the operational phase the
mitial data are the anticipated pattemns of change in the
technical parameters of the equipment while the purpose
of predicting is a timely warning of failures and use of
such operating conditions and modes of PE maintenance
that best fit the given task of ensuring reliability. At this
stage, the situations of sudden, unpredictable traditional
methods of PE subsystems or parts failures are not
excluded (Subbotin and Oleymk, 2008). This fact can be
attributed to several factors: the object under study in
the reporting period of operation is on the stage of
“running-in”, insufficient a priori information on changing
specifications when starting object’s operation, a rough
description of specificity of subsystems and components

functioning in the operational documentation. In
emergency situations on the stage of operation or testing
of techmical objects, the choice of a control action it 1s
usually based on the experience of skilled professionals
of a narrow subject area.

However, due to the constant need for high-quality
expertise and taking mto account the requirements for the
exact solution of a certain class of PE control tasks and
pattern recognition, expert solutions are often ineffective.
Thus, the obtaining and using the information about the
a posteriori PE subsystem parameters and various test
data can increase the accuracy of predictions and
consequently, the quality of the control (Fedin and
Trisch, 2006; JTaber et ai., 2008).

In this regard, the study offers one of the solutions
to the problem of diagnostics of technical condition of
electrothermal furnaces based on expert knowledge using
neural networks and fuzzy logic techmques. According to
these methods of artificial intelligence, the diagnoses
prediction process in contrast to the classical probabilistic
or deterministic methods can be carried out more
quickly and at a different algorithmic level (Miranda and
Castro, 2005; Hao and Cai-Xin, 2007; Naresh et af.,
2008).

Tt should be noted that the self-learning neural
network and fuzzy models are the foundationof modern
intelhigent decision-making support systems on the actual
state of PE m a noisy or inconsistent diagnostic
information. The use of such models m the structure of
theautomated Process Control System (PCS) can unprove
the effectiveness of operational diagnostics to
(Suleimenov et al., 2014a, b).

Therefore, the topical task of improving the PCS
efficiency of smtering production 1s the development
and introduction of resource-saving technologies of
intellectual information decision-making support to ensure
the reliability of PE and the quality of yellow phosphorus
production.

The purpose of the study 1s to provide an adaptive
system model of runtime diagnostics of technical
condition of PE and predicting emergency situations in
the process of production of yellow phosphorus on the
example of electrothermal fumace in a comprehensive
change of its diagnostic parameters.

MATERITALS AND METHODS
The analysis of the conditions of sintering
production and phosphorus electric melting modes

allowed 1dentifying the following features of its
production process:
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¢+ The electric melting process lag due to the large
volumes of the used ingredients

¢+ Large volumes of silos and storage hoppers,
resulting m sigmficant delay m the corresponding
control channels

*  Wide range of the charge ingredients: phosphates,
sinter and quartzite fines, dust, cole

*+ Composition heterogeneity of the
components in ore silos

mixture

Besides, the production of yellow phosphorus is
characterized by a variety of potential PE problems and
their solutions. In particular, one of the common problems
1s the “temperature rise under an electric furnace cover”.
This type of problem belongs to electric furnace failures
or its defective conditions which oceur due to the
following main reasons: charge hang in the loading
chutes, slag overexposure, short electrodes, coke excess
in the charge, electrode break (Suleimenov et al., 201 4a,
b). This 1ssue as well as a number of other PE
malfunctions, may be caused by structural or operational
reasons, may occur accidentally or gradually and 1s a
prerequisite for an emergency, i.e., ascertains the
occurrence of an emergency but one cannot predict it by
the actual state of the electric furnace.

The change of temperature in the electric furnace 1s
a “standard” situation which is explained by the uneven
chemical composition and physical properties of the
loaded blend. The temperature is controlled based on the
so-called “fine adjustment” by lifting or deepemng the
electrodes or “rough adjustment” through switching
transformer stages. However, a condition in which the
temperature exceeds a certain level and is not reduced by
the implemented management system algorithm, indicates
occurrence of an emergency due to the above-stated
reasons. Thus, it can be argued that if the change in
temperature within the prescribed limits is compensated
by the mampulated PCS influence, the techmcal condition
of the electric furnace is considered normal At the same
time, a condition in which an electric furnace 1s not
“subordinate” to the PCS, regulating the temperature in
the range close to acceptable, suggests the possibility of
an emergency and the appropriateness of subsystem
mtellectual diagnostics. Still, the indicator of current
handling of electrothermal furnace can be used as a
diagnostic parameter which will allow assessing the
emergency risk at an early stage (Suleimenov et al., 201 4a,
b).

Electrothermal furnace diagnostics process which is
a non-linear dynamic management object, can be
described by a set of parameters X = (X, X,, ..., X,) which
are characterized as a rule by different informative
and non-linear links with projected electric condition

(diagnosis) Y = (Y,, Y, .., Yy). This does not allow
constructing a linear model for the classification of
diagnoses of the control object.

Therefore, as a mathematical device of an mtellectual
technical PE diagnostics system as a non-linear dynamic
object, it is proposed to use the method of recognition
and classification of diagnoses based on artificial neural
networks. The choice of neural network modeling
methodology n electric furmnaces diagnostics 1s due to its
advantages.

Firstly, neural networks represent the best of the
existing methods of image classification, approximating
and extrapolation of nonlinear functions.

Secondly, the presence of non-linear activation
functions m the multilayer neural network provides an
efficient implementation for sufficiently flexible control
changes, identification and diagnosis of complex
nonlinear technical objects.

Thirdly, the parallelism of neural networks is a
prerequisite for the effective inplementation of software
and hardware support of neural network controller in the
control loop during operation or testing (You et al., 2014,
Pegat, 2009).

Tt should be noted that the model constructing
process of muntime PE intelligent diagnosis is based on
expert knowledge formalization that, despite its reliability,
15 characterized by thepresence of subjectivity in the
expert estimates. Therefore, when creating intellectual
systems of runtime diagnostics of PE technical condition
along with neural network modeling is advisable to use
the mathematical device of fuzzy logic (Kosko, 1991,
Borisov et al,, 2007, Jang, 1993). However, the classic
system with fuzzy logic does not has the ability to
auto-learn and the disadvantage of the subjective choice
of a set of fuzzy rules, membership functions type and
parameters, describing the input and output variables as
well as the type of fuzzy system output algorithm
(Konstantinov et al., 2016). Elininating this disadvantage
15 possible basedon Adaptive Newo Fuzzy Inference
System (ANFIS) which 1s a multilayer neural networks, in
which the layers serve as elements of a fuzzy inference
system (Jang, 1993; Nauck et al., 1997).

RESULTS AND DISCUSSION

The objective of computational experiments 15 the
development of self-learning intelligent diagnosis system
model of electric fumace technical condition based on
neural networks and fuzzy modeling. As a way, Le., a
teaching indicator of adaptive intelligent diagnosis model
of electric furnace, we used the possible values of control
estimates (diagnosis) Y to the problem of “raising
temperature under the cover of an electric furnace”
(Table 1) (Suleimenov ef al., 2014a, b).
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Table 1: Values of Y electric firnace control estimates

Y values Electric fumace conditions Possible solutions

0.00, ..., 0.25 Emergency situation Acting on the orders of plant technician

0.26, ..., 0.50 Preemergency Detect the charging chute with a frozen charge and “break” it according to the instructions
0.51,...,0.75 Emergency possible Drain slag with a maximum removal of coke

0.76, ..., 1.00 Normal state Let electrodes pass or “wash” with charge, depleted of coke, to analyze the possible reasons

for control lowering: charge hang in loading chutes, slag overexposure, short electrodes,
coke excess in the charge, electrode break, no influence

Table 2: Fragment of the training sample of neuro-fuzzy model

Table 3: Comparative analysis of the intellicent models reliability

Experiment No. X X X Xy Y

1 0.0 0.5 0.5 0.5 0.75
2 0.5 0.5 0.5 0.5 0.95
3 1.0 0.5 0.5 0.5 0.25

The data in Table 1 data allowed to define four
fuzzy terms of Y control assessment, describing the state
of the electric furnace, namely “low” -(0.00, ..., 0.25);
“average” -(0.26, ..., 0.50); “rather high” -(0.51, ..., 0.75),
“lgh” -(0.76, ..., 1.00). To determine the degree of current
PE controllability, scientists use the evaluation criteria of
static control channels and PE lag evaluation. As input
models we used static values (X, X,) and dynamic
(3, X ) diagnostic parameters: temperature under the
electric furnace arch X, electrodes penetration value X,
temperature rise rate X, electric power X,. To specify the
range of the input variables, identical to the range of the
output variable, we performed their normalization as a
result of which based on expert estimates, the values of
0.0, 0.5 and 1.0 are assigned a three fuzzy terms,
describing diagnostic parameter values of “mimmum”,
“medium” and “high”. A fragment of the fuzzy model
traming sample-a knowledge base, prepared by analogy
with the planning matrix of fractional factorial experiment
to assess the degree of control electric is given in
Table 2.

The knowledge base is the foundation of the fuzzy
inference mechanism and is formed through the heuristic
method as a set of fuzzy production rules:

IF Xis A_, THEN Y is C, (M

Where:
A,and C, = The fuzzy variables, determined by the
correspondent n-dimentional membership

functions
X = The dimension of the mput vector
r = The number of a fuzzy production rule

Creating a comprehensive knowledge base for electric
furnace system runtime diagnostics can be carried out
based on the type of production rules of Mamdam output
algorithm. IF X, 15 A, ANDIF X, 18 A, AND ... IF X 1s
A, THEN Y is C, or the type of Sugeno output algorithm:

IFX, ecis A, ANDIF X, is A, ANA__IF
X,isA_,THEN Y =F (X, X,, ., X,)

(2

Model
Criterion (%) Fuzzy Neural network ANFIS
Prediction error 0.45 3.00 0.20

where, Y =F, (3{, X,. ..., X)) 18 a certain function, r is the
rule number. Here, A = AnA,n..NA,. Fragment of the
training sample Table 2 is presented in the form of three
production rules.

Rule 1: IF the temperature is “mimimal” AND the
electrodes depth is “medium”™ AND temperature increase
is “medium” AND power is “medium” THEN the
controllability is “rather high”.

Rule 2: [F the temperature 13 “medium” AND the
electrodes depth 13 “medium™ AND temperature increase
is “medium” AND power is “medium” THEN the
controllability is “very high”.

Rule 3: IF the temperature is “high” AND the electrodes
depth 13 “medum” AND temperature increase 1s
“medium” AND power 15 “medium” THEN the
controllability is “low”, etc. The implementation of
computational experiments, aimed at restoring the
multidimensional dependence Y = F (¥X,-X,) was carried
out using three model types of electric furnace intelligent
diagnosis: fuzzy neural network and ANFIS in a
mathematical modeling system (MATLAB). Still, ANFIS
Model implements a fuzzy system, based on the Sugeno
algorithm output in a 5 layer neural network of
feedforward signal where the first layer is intended to
define the terms of the mnput variables (X-X,), the second
specifies the antecedents (prerequisites) for fuzzy rules
“X1s A" (Eq. 1), the third normalizes the degrees of rules
implementing, the fourth realizes the rule consequent
(conclusion) “THEN Y is C,” and the fifth performs the
result aggregation of inference Y, obtained based on a set
of various rules. Comparative reliability evaluation of the
simulation results by the criterion of the relative error
prediction (detection) diagnosis of electric furnace
malfunction using the control sample showed that it is
advisable to use an adaptive ANFIS Model (Table 3) for
intellectual runtime diagnostics subsystem.

The learming result of ANFIS Model with the error
value equal to 5.4003x1077 and reached 50 training cycles
(Fig. 1) 18 a corrected smooth membership function,
implemented in the Sugeno fuzzy inference algorithm for
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Fig. 1: Screenshot of the ANFIS Model learning process in a MATLAB system

the wvariable “degree of controllability”. Using this
algorithm allows to base the production rules (Eq. 2) and
define the output Y for a given input vector X

A distinctive feature of membership functions,
obtained as a result of ANFIS Model learning is the ability
to describe complex control principles of obtaiming reliable
results of electrothermal furnace technical condition
diagnostics.

The results of the modeling assessment of
controllability Y at different values of the input variables
X,-X, are presented as graphs in Fig. 2-5. To assess
Y depending on the changes in any of the two input
variables, the modeling was carried out under nominal
conditions of the other two variables. For example,
single-factor dependence of Y = f(X,) was obtained with
the maximum value of X, = 1.0, average X, = 0.5 and
minimum X, = 0.0 of electrode depth at nominal rate of
temperature change modes X, = 0.5 and electric power
X, =05 (Fig. 2).

Analysis of the graphs shown mn Fig. 2, shows that
the degree of control reaches a maximum value of Y = 0.95
at medium temperature under the electric furnace arch of
¥, = 0.5 and at a nominal electrodes depth of X = 0.5
which 15 explained by the electric furnace’s state,
whenall the input variables are equal to each other,
e, X, =X, =X, =X, =05

However, at the same position of electrodes
crosshead, the temperature in an electric fumace increases

+X=00

0.0 =-=X=00
0.0 --X=10
0.0 P

T T T T T T L] T T T T
00 00 00 00 0.0 00 00 00 10 11
X

Fig. 2 The modeling results for estimation of Y
depending on changes in an electric furnace at a

temperature of ;= 0.5 and X, = 0.5

to a maximnum X; = 1.0 when Y = 0.25 which 1s a
prerequisite for an emergency (Table 1). If at X, = 0.5
temperature in the electric furnace takes a minimum value
of X, = 0.0, then there is a possibility of an emergency,
because in this case controllability Y = 0.75.

At the maximum immersion electrodes X, = 1.0 and a
maximum temperature in an electric furnace X, = 1.0,
controllability takes the maximum value of X, = 0.95 which
characterizes the normal state. Similarly, we can mterpret
the results of controllability evaluation at the minimum
electrode traverses immersion of X; = 0.0 (Fig. 2).
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v
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0 01 02 03 04 05 06 07 08 09 1.0 11
X,

Fig. 3: The modeling results for evaluating Y depending
on the electrode traverses position at X; = 0.5 and

X, =05

Tt should be noted that particularly interesting
18 the result, obtained as a function Y = f{X,) as,
for example, m case of electrode breakage fumace
handling becomes more difficult which is shown at
graphs (Fig. 3).

Since, the minimum temperature for the electric
furnace arch 15 X, = 0.0 with the electrodes traverse
immerse the controllability curve tends to decrease from
Y =085whenX,=0.0to Y =0.65 when X, =0.5toa state
of total unit uncontrollability of ¥ = 0.15 when X, = 1.0.
The resulting pattern 18 reversed at the maximum
temperature for the electric furnace arch of X, = 1.0 when
Y=095at¥,=10to Y=025at3,=05and Y =015
when X, = 0.0. For electrodes position of X, = 0.0 the
controllability Y = 0.65 does not drop below Y = 0.75 when
¥, = 1.0 considering X, = ¥X; =X, = 0.5 while the highest
unit controllability Y = 0.95 15 observed for the nominal
regimes X, = X, = X, =X, = 0.5 (Fig. 3).

To evaluate the dynamic component of the
controllability, we determined the dependence of Y = ()
under the condition of increasing temperature as at the
temperature over 800°C there 13 an increase of exhaust
gas volume and respectively the exhaust velocity that
leads to the gas “slip” through the condensers and
irreversible losses of part phosphorus in gas offtakes
(Fig. 4).

Also at temperatures above 800°C the phosphorus
atoms go over to tetravalence as a result of which such
phosphorus compounds are poorly soluble in water,
resulting in a loss of phosphorus on capacitors.
Therefore, the curve at the mmimum temperature under
the electric furnace arch X, = 0.0 has a positive trend with
an increase of temperature change rate. As at X, = 0.0
furnace controllability Y = 0.5, at X, = 0.5 controllability
mcreases to Y = 0.75 and given X; = 1.0 it reaches the

0 0'.1 ﬂl.2 0:3 0.l4 O.IS 0.'6 OI.'J' ors 0j9 ].'0 l.ll -
X,
Fig. 4. The modeling results for Y estimates depending

on the temperature change rate under an electric
fumace arch at X, = 0.5 and X, = 0.5

.
Ll

L) L) T T L} L) L] T T L T
0 01 02 03 04 05 06 0.7 08 09 1.0 L1
X,

Fig. 5: The modeling results for evaluating Y depending
on an electric furnace power when X, = 0.5
and X, = 0.5

value of Y = 0.9. However, the maximum temperature
under the electric furnace arch X, = 1.0 the controllability
decreases from Y = 0.85 when X, = 00 to Y = 015
when X; = 1.0. The dependence of electric furnace
controllability Y = f(3{;) from power when X, =3, =0.5
(Fig. 5) shows that for X, = 1.0 the Y value is changed
fromY=05whenX,=10to Y =0.25when ¥, = 0.5 and
to Y = 0.2 when X, = 0.0, indicating an emergency or a
pre-emergency condition (Table 1).

Thus, the practical use of the developed newro-fuzzy
model allows, based on current state of the electrothermal
furnace, to carry out its runtime diagnosis and to obtain
information to support decision making 1 the
management process of yellow phosphorus production.

CONCLUSION

The study shows that the use of adaptive

neuro-fuzzy models for runtime diagnostics 1s efficient in
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implementing the strategy of operation and maintenance
of sintering production units based on reliable predictive
estimates of their actual status in terms of restrictions on
the use of material and information resources.

It develops an adaptive model of neuro-fuzzy expert
system for technical diagnostics of production equipment
of sintering production, the distinctive feature of which is
the use of learning sample, obtained through fractional
factorial experiment, using a production fuzzy rules
database, created for situational modeling of possible
failures and emergencies of electrothermal fumaces during
their operation.

Practical use of ANFIS Model, developed in
MATLAB-system of mathematical modeling, allowed to
establish regularities between the electric furnace
controllability and the main diagnostic parameters mn the
event of a “growing temperature under an electric fumace
cover” problem which allows predicting and preventing
this kind of accidents in electrothermal furnace operation.
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