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Abstract: This study represents work suggestion an 1deological technmique to solve optimization problem with
multi-response enclosing Magnetic Abrasive Fishing (MATF) of stainless steel 316 (AISI 316 SS) using
Adatificial Neural Network (ANN) and Radial Basics Function Neural Network (RBFNN) methods based on Box
Behnken design. The prediction of MAF is done by choosing input process parameters such as number of
cycles of pole geometry, cutting velocity, amplitude of pole geometry, current, working gap and fimshing time,
whereas the output responses were Metal Removal Rate (MRR) and Surface Roughness (SR). Each node
achieves an easy process in calculating its response from its independent variable that is conveyed through
links joined to another. Tt is concluded that the error obtained in RBFNN Model is bigger than that ANN Model.
In the end, it was proved that the create network’s model was built using ANN tool that gives the predicted
result when compared to the RBFNN Model.

Key words: Magnetic abrasive finishing, metal removal rate, neural network, box behnken design, radial basics
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INTRODUCTION

Finishing is a kind of machining processes for
extremely raising the surface quality of a machmed
object when maintaimng stable precision and enhancing
the machining accuracy grade (Bang-Zhong and
Tin-Tin, 2005). The swrface finish has a pivotal effect on
umportant functional characteristics like power losses and
wear resistance because the friction on the engineering
components (Jayakumar, 2001 ). Abrasive fimshing can be
divided into two types of technologies. Cne 1s traditional
methods and other 1s advanced methods of finishing
process. In the manufacturing of precision parts, the
traditional methods such as honing, lapping, grinding,
etc., are labour intensive, comparatively less controllable
for fimishing operations. These operations usually use a
rigid tool that undergoes the Workpiece (WP) to
essential stresses which may cause some defects
resulting in decreased reliability and strength of the WP
Considerable advanced fine firishing operations have
been improved to precisely control the abrading forces,
one of these processes is the Magnetic Abrasive
Finishing (MAF) (Singh et al, 2010). This process
removes an amount of material by the rotaton and
indentation of magnetic abrasive particles in the circular
tracks.

The specialty of MAF process was capability to
control the flexibility of the tool, ferromagnetic powder

sealing by a magnetic field, one can control the density
and rigidity of the magnetic brush that help to change the
topography of magnetic flux in the working gap.
Yamaguchi and Shinmura (1999) have examined the
microscopic changes m the surface texture of SUS304
stainless steel disk resulting from an internal magnetic
abrasive finishing process using sintered magnetic
abrasive powder of a ferromagnetic substance (Fe,O,) and
pure aluminum. Yamaguchi and Shinmura (2000) have
proposed an internal magnetic abrasive finishing
process using a pole rotation system to produce highly
fimished inner surfaces of SUS304 stainless steel tubes.
MAF setup has designed and fabricated by Jamn er al.
(2001). The performance of the setup has also studied on
non-magnetic stainless steel with the use of loosely
bounded MAPs (Mechanical mixing of ferromagnetic
Powder and Abrasive powder with a small amount
of lubricant). Tt concluded that working gap and
circumferential speed of the workpiece are the parameters
which significantly mfluence the material removal, change
in surface Roughness value (Ra). The effectiveness and
validity of a MAF method to refine rough surfaces and
sharp edges of silver steel bars have investigated by
Khairy (2001), using a sintered mixture of AlLO, and
wron powder. Chang ef al. (2002) have described the
process principle and the finishing characteristics of a
mechanical mixture of SiC abrasive and ferro magnetic
particles with a SAE30 lubricant as unbounded magnetic
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abrasive within cylindrical magnetic abrasive finishing.
Raghuram and Joshi (2008). Have proposed analytical
model for the surface rouglness m polishing stainless
steel work surface. The model found to agree reasonably
well with the experimental results. Kwak and Shin (2011)
mnproved the magnetic force for MAF of AZ31B
magnesium alloy. The result indicated that the magnetic
force intensity of magnetic table and spindle speed of
inductor was significant parameters for improvement of
in the second-generation MAF
process. This study illustrates work suggestion, an
intellectual  appreoach  in  solving multi-response
optimization problem involving MAF of ATSI 316 SSusing
Radial Basics Function Neural Network (RBFNN) and
Artificial Neural Network (ANN) techmques and compare
between them.

surface roughness

MATERIALS AND METHODS

An electromagnetic inductor has designed and
manufactured using for finishing flat surfaces WP by a
vertical milling machme. The mductor was a steel rod
wrapped around a coil of wires, magnetic force was
generated on the working gap between pole and WP, the
gap was filled with powder and the current was applied by
(DC) power supply. The abrasive powder used 400 um
mesh size, contain 67% Fe, 0, and 33% industrial diamond.
The work piece plate material is ATSI 316 SS with chemical
composition listed in Table 1. After MAF operation, the
following techmques were utilized to measure the MRR
and SR of the machining specimens:

*  Digital weight balance (Denver nstrument) with an
accuracy of 0.01 mg to decide the MRR by measuring
the weight difference (AW) of the workpiece

+  Surface Roughness tester (TR220) to measure the
surface roughness before and after the MAF process
(ARa)

*  Scanning Electron Microscopy (SEM) (Model,
Inspect S50) to topology
observations

conduct  surface

The process parameters in this investigation are
number of cycles of pole geometry (A), cutting velocity
(B), amplitude of pole geometry (C), current (D), worlking
gap (E) and Fimshing time (F) as illustrated in the Table 2
whereas MRR with SR were used as the response for ATSI
316 88. Six process parameters with three levels totally of
54 tests were carried out according to Box-Behnken
approach as shown in the Table 3.

Table 1: Chernical composition of ATST 316 88

Elements Weight (%)
C 0.080
Mn 2.000
8i 0.750
P 0.045
s 0.030
Cr 18.000
Mo 3.000
Ni 14.000
N 0.100

Table 2: Process variables and their levels used in the experiment of AISI

31688
Levels
Input Symbol 1 2 3
No. of cycles of pole geometry A 2 6 10
Cutting velocity (rpm) B 200 700 1200
Amplitude of pole geometry (mm) C 6 12 18
Current (A) D 2 4 6
Working gap (mm) E 1 2 3
Finishing time (min) F 12 16 20

Radial basics function neural networks: Three layers
of RBFNN, input, out-put and the RBF (hidden) layer as
i Fig. 1. RBFNN demand mimimal computational
time over back propagation because of the hidden to
output layer are to be
signal values.

The hidden layer inputs consisting of the scalar

specified by the error

weights of linear mteractions gemtive the vector
inputs X = (X, X,, ... , X" where unity values are
specified to the scalar weights. Subsequently, the total
vector input builds up to every neuron in the hidden
layer. The vector that comes in are mapped to the
radial basis method in each hidden node.
Y = (Y, Y,, .., Y,) supplied by the output layer for n
outputs by the

Vector

response’s  linear combination
conformable to the hidden nodes in producing output that
15 final. Figure 1 illustrates the construction of a typical
response RBFNN; the response of the network is

obtained as:

y = f(x) = ﬁw,cpl (x) (1

Where:

f(x) = The final response

¢, = Performs the radial basis use of the ith hidden node

w; = Perform the hidden into output weight with respect
to the ith hidden node and hidden nodes in whole

number 1s k

An RBF is a mult-dimensional function which
explains the remoteness among a pre-defined centre
vector and a given input vector. Different kinds of

7952



J. Eng. Applied Sci., 12 {Special Issue 6): 7951-7958, 2017

Table 3: Process variables and their corresponding responses
Experiment No. of cycles of  Cutting velocity ~ Amplitude of pole Current Working gap  Finishing time

No. pole geometry A (rpm) B geometry (mm) C (AYD (mm) E (min) F MRR(2) G ASR (um)H
1 6 200 6 4 3 16 0.0028 0.0401
2 10 700 45 4 2 20 0.0116 0.0812
3 10 700 12 6 1 16 0.0099 0.0776
4 6 1200 18 4 3 16 0.0176 0.0914
5 10 1200 12 2 2 16 0.0157 0.0784
6 10 200 12 2 2 16 0.0041 0.0590
7 6 700 6 6 2 12 0.0067 0.0576
8 10 1200 12 6 2 16 0.0159 0.0696
9 10 700 18 4 2 12 0.0128 0.0836
0 6 200 18 4 3 16 0.0053 0.0821
11 2 700 12 6 1 16 0.0104 0.0826
12 2 200 12 2 2 16 0.0039 0.0588
13 2 700 12 2 3 16 0.0092 0.0769
14 2 700 12 6 3 16 0.0090 0.0862
15 6 200 12 4 1 12 0.0043 0.0758
16 6 700 12 4 2 16 0.0099 0.0718
17 2 700 18 4 2 20 0.0121 0.0848
18 6 200 12 4 3 20 0.0042 0.0580
19 6 700 6 2 2 20 0.0067 0.0648
20 2 200 12 6 2 16 0.0044 0.0654
21 10 700 12 2 1 16 0.0105 0.0772
22 6 1200 6 4 1 16 0.0106 0.0549
23 10 200 12 6 2 16 0.0045 0.0649
24 10 700 12 2 3 16 0.0099 0.0822
25 10 700 6 4 2 20 0.0070 0.0690
26 6 700 6 6 2 20 0.0064 0.0685
27 6 200 12 4 1 20 0.0028 0.0678
28 6 700 18 2 2 20 0.0110 0.0992
29 6 200 12 4 3 12 0.0038 0.0573
30 6 1200 12 4 1 12 0.0147 0.0852
31 6 1200 12 4 3 20 0.0150 0.0844
32 6 700 12 4 2 16 0.0105 0.0680
33 6 700 18 6 2 12 0.0132 0.0746
34 2 700 6 4 2 12 0.0067 0.0498
35 6 700 18 6 2 20 0.0126 0.0746
36 6 700 18 2 2 12 0.0135 0.1092
37 6 200 6 4 1 16 0.0033 0.0560
38 10 700 6 4 2 12 0.0057 0.0708
39 6 1200 12 4 1 20 0.0133 0.1082
40 6 1200 6 4 3 16 0.0077 0.0534
41 6 T00 12 4 2 16 0.0092 0.0909
42 10 700 12 6 3 16 0.0082 0.0944
43 6 700 12 4 2 16 0.0090 0.0865
44 6 700 12 4 2 16 0.0094 0.0868
45 6 1200 18 4 1 16 0.0188 0.1036
46 2 1200 12 2 2 16 0.0135 0.1026
47 2 700 18 4 2 12 0.0109 0.1064
48 6 1200 12 4 3 12 0.0104 0.1069
49 2 1200 12 6 2 1.5 0.0128 0.0974
50 6 700 12 4 2 16 0.0078 0.0668
51 6 700 6 2 2 12 0.0054 0.0654
52 2 700 6 4 2 20 0.0059 0.0662
53 6 200 18 4 1 16 0.0040 0.0704
54 2 700 12 2 1 16 0.0095 0.0872

>®—>f_1 >@—> ~—

b {1} b {2}

Fig. 1. Structure of RBFNN
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Table 4: Results attained in RBFNMN

Experiment MRR (g) RBFNN MRR (g) Error Experiment SR (um) RBFNN SR (jum) Error

0.0028 0.002670 0.046429 0.0401 0.043067 -0.07399
0.0116 0.010606 0.085690 0.0812 0.081333 -0.00164
0.0099 0.009508 0.039596 0.0776 0.077733 -0.00171
0.0176 0.017662 -0.003520 0.0914 0.091600 -0.00219
0.0157 0.015624 0.004841 0.0784 0.078533 -0.00170
0.0041 0.004566 -0.113660 0.0590 0.059333 -0.00564
0.0067 0.006714 -0.002090 0.0576 0.059333 -0.03009
0.0159 0.015932 -0.002010 0.0696 0.075600 -0.08621
0.0128 0.0128% -0.007500 0.0836 0.087467 -0.04626
0.0053 0.005310 -0.001890 0.0821 0.088933 -0.08323
0.0104 0.010416 -0.001540 0.0826 0.083067 -0.00565
0.0039 0.003588 0.080000 0.0588 0.059200 -0.00680
0.0092 0.008832 0.040000 0.0769 0.077200 -0.00390
0.0090 0.009028 -0.003110 0.0862 0.086267 -0.00078
0.0043 0.004368 -0.015810 0.0758 0.076000 -0.00264
0.0099 0.009342 0.056364 0.0718 0.078489 -0.09316
0.0121 0.012126 -0.002150 0.0848 0.086133 -0.01572
0.0042 0.004276 -0.018100 0.0580 0.062000 -0.06897
0.0067 0.007370 -0.100000 0.0648 0.066133 -0.02057
0.0044 0.004848 -0.101820 0.0654 0.066533 -0.01732
0.0105 0.010552 -0.004950 0.0772 0.078533 -0.01727
0.0106 0.010690 -0.008490 0.0549 0.056267 -0.02490
0.0045 0.004564 -0.014220 0.0649 0.066267 -0.02106
0.0099 0.009908 -0.000810 0.0822 0.083600 -0.01703
0.0070 0.006604 0.056571 0.0690 0.069733 -0.01062
0.0064 0.006100 0.046875 0.0685 0.072667 -0.06083
0.0028 0.002830 -0.010710 0.0678 0.074133 -0.09341
0.0110 0.011558 -0.050730 0.0992 0.099333 -0.00134
0.0038 0.004134 -0.087890 0.0573 0.057467 -0.00291
0.0147 0.014772 -0.00:4900 0.0852 0.085333 -0.00156
0.0150 0.0150d6 -0.003070 0.0844 0.084667 -0.00316
0.0105 0.009742 0.072190 0.0680 0.074489 -0.09543
0.0132 0.0126% 0.038182 0.0746 0.074933 -0.00446
0.0067 0.006770 -0.010450 0.0498 0.050000 -0.00402
0.0126 0.0126% -0.007620 0.0746 0.074933 -0.00446
0.0135 0.013542 -0.003110 0.1092 0.110667 -0.01343
0.0033 0.003370 -0.021210 0.0560 0.056267 -0.00477
0.0057 0.005722 -0.003860 0.0708 0.071067 -0.00377
0.0133 0.013318 -0.001350 0.1082 0.109733 -0.01417
0.0077 0.007738 -0.004940 0.0534 0.056400 -0.05618
0.0092 0.009342 -0.015430 0.0909 0.085849 0.055567
0.0082 0.008290 -0.010980 0.0944 0.098400 -0.04237
0.0090 0.009342 -0.038000 0.0865 0.078489 0.092613
0.0094 0.009342 0.006170 0.0868 0.078489 0.095749
0.0188 0.019048 -0.013190 0.1036 0.101600 0.019305
0.0135 0.013542 -0.003110 0.1026 0.103200 -0.00585
0.0109 0.010978 -0.007160 0.1064 0.106533 -0.00125
0.0104 0.010416 -0.001540 0.1069 0.111200 -0.04022
0.0128 0.0128% -0.007500 0.0974 0.098000 -0.00616
0.0078 0.008542 -0.095130 0.0668 0.071823 -0.07519
0.0054 0.005490 -0.016670 0.0654 0.066400 -0.01529
0.0059 0.005974 -0.012540 0.0662 0.066533 -0.00503
0.0040 0.004082 -0.020500 0.0704 0.071467 -0.01516
0.0095 0.009558 -0.00611 0.0872 0.087333 -0.00153
function in radial base occur. The normalized utilized here. Assess the output weight by

Gaussian function usually utilized as the RBF, ie.:
(%) = exp H H ()

where, 1, and o, denote center of the ith node and the
spread width, respectively. Normally, the RBFNN traimng
1s classified into two stages: compute the parameters of
RBFs, 1e., spread Gaussian center and width. In
normal, k-means clustering methodelogy was usually

observing, learning methodology. Usually Recursive
Least Square (RLS) and T.east Mean Square (LMS) were
utilized.

The primary phase s highly complex because the
location and number of centres in the hidden layer force
fully affect the performance of the RBFNN. The predicted
values acquired out of RBFNN are not convinced, the
amount of the response (MRR and SR) are high compare
with the experimental value as in Table 4, therefore, an
error 18 also high. So, ANN 15 carried out to determine the
predicted values.
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Back propagation neural network: ANN consists of
three layers, the first layer is called an input layer, single
or more of hidden (unobserved) layers are the second
layer finally, the third layer 1s called the output layer. Not
only the output but also, the hidden layers have
processing elements and interconnections called
synapses and neurons  correspondingly.  Each
interconnection link with connection weight or strength.
Very carefully decided the hidden layers and nodes
of each layer, since, if the system has too lttle ludden
layer umts, it cannot model the specific information.
However, many of these umts determine the capability
of the network to popularize the results for this
reason, the resulting model would not work
completely for novel incoming data. Each processing
element primarily achieves a weighted accumulation of
the comresponding input values and then the result 1s
passed through an activation function. Since, there 1s no

Input layer

Amplitude of pole geometry

No. of cycles of pole geometry

Finishing time

Cutting velocity

Z,

Current

Working gap
Fig. 2: Neural network Model

Table 5: Results obtained from artificial neural network

——C
N

NIR% “‘——
RO FA ® <37
S K <>
LS5BEN
< SN
LSRN
754 >N

calculation was performing in the input layer node, the
overall input to each node is the mean weighted output of
the nodes in the first layer.

Proposed ANN Model: As shown i Fig. 2 and 3, the
design of feed forward which contains multi-layers
network by the algorithm of back propagation learning is
(6-20-2) for MAF. The training of NN contains two passes
are forward pass and reverse pass, propagation of input
signals to output from within the network called forward
pass while propagation of the determined error signals
back out of the network called reverse pass where they
are utilized in adjust the values of the weights.

Two models, namely, the RBFNN and ANN are built
and estimated. The ANN back propagation technicque with
an estimated of predictive model gives kindly result
compared to RBFNN Model with values close to the
experimental results as shown in Table 5.

Hidden layer Ouiput layer

ARa

Experiment MRR (g) ANN MRR Error (%6} Experiment SR (jun) ANN SR (jum) Error (%6)
0.0028 0.002972 -0.061430 0.0401 0.040959 -0.02142
0.0116 0.010933 0.057500 0.0812 0.079641 0.01920
0.0099 0.010199 -0.030200 0.0776 0.078059 -0.00591
0.0176 0.017195 0.023011 0.0914 0.090840 0.006127
0.0157 0.014663 0.066051 0.0784 0.078683 -0.00361
0.0041 0.003808 0.071220 0.0590 0.060373 -0.02327
0.0067 0.006759 -0.008810 0.0576 0.058053 -0.00786
0.0159 0.017658 -0.110570 0.0696 0.074395 -0.06889
0.0128 0.012387 0.032266 0.0836 0.084015 -0.00496
0.0053 0.005615 -0.059430 0.0821 0.082977 -0.01068
0.0104 0.010689 -0.027790 0.0826 0.081541 0.012821
0.0039 0.003962 -0.015900 0.0588 0.058764 0.000612
0.0092 0.009518 -0.034570 0.0769 0.083212 -0.08208
0.0090 0.008439 0.062333 0.0862 0.084736 0.016984
0.0043 0.004372 -0.016740 0.0758 0.076751 -0.01255
0.0099 0.009004 0.090505 0.0718 0.078531 -0.09375
0.0121 0.013415 -0.108680 0.0848 0.110649 -0.30482
0.0042 0.004168 0.007619 0.0580 0.057633 0.006328
0.0067 0.005168 0.228657 0.0648 0.059755 0.077855
0.0044 0.004744 -0.078180 0.0654 0.065212 0.002875
0.0105 0.008625 0.178571 0.0772 0.056131 0.272915
0.0106 0.010757 -0.014810 0.0549 0.055299 -0.00727
0.0045 0.004772 -0.060440 0.0649 0.065089 -0.00291
0.0099 0.008840 0.107071 0.0822 0.082773 -0.00697
0.0070 0.006889 0.015857 0.0690 0.089683 -0.29975
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Table 5: Continue

Experiment MRR (g) ANN MRR Error (%4) FExperiment SR (jumn) ANN SR (um) Error (%4)
0.0064 0.006414 -0.002190 0.0685 0.067133 0.019956
0.0028 0.003876 -0.384290 0.0678 0.069156 -0.02000
0.0110 0.009535 0.133182 0.0992 0.099304 -0.00105
0.0038 0.005466 -0.438420 0.0573 0.061305 -0.06990
0.0147 0.014434 0.018095 0.0852 0.085308 -0.00127
0.0150 0.014644 0.023733 0.0844 0.083771 0.007453
0.0105 0.009004 0.142476 0.0680 0.078531 -0.15487
0.0132 0.012312 0.067273 0.0746 0.075716 -0.01496
0.0067 0.007176 -0.071040 0.0498 0.050464 -0.01333
0.0126 0.011369 0.097698 0.0746 0.073227 0.018405
0.0135 0.014102 -0.044590 0.1092 0.104684 0.041355
0.0033 0.003348 -0.014550 0.0560 0.056887 -0.01584
0.0057 0.005936 -0.041400 0.0708 0.073987 -0.04501
0.0133 0.013587 -0.021580 0.1082 0.108492 -0.00270
0.0077 0.007774 -0.009610 0.0534 0.052692 0.013258
0.0092 0.009004 0.021304 0.0909 0.078531 0.136073
0.0082 0.008406 -0.025120 0.0944 0.093960 0.004661
0.0090 0.009004 -0.000440 0.0865 0.078531 0.092127
0.0094 0.009004 0.042128 0.0868 0.078531 0.095265
0.0188 0.021110 -0.122870 0.1036 0.100492 0.03000
0.0135 0.012417 0.080222 0.1026 0.102289 0.003031
0.0109 0.010850 0.004587 0.1064 0.106657 -0.00242
0.0104 0.010228 0.016538 0.1069 0.107537 -0.00596
0.0128 0.012237 0.043984 0.0974 0.093837 0.036581
0.0078 0.009004 -0.154360 0.0668 0.078531 -0.17561
0.0054 0.005495 -0.017590 0.0654 0.065497 -0.00148
0.0059 0.006114 -0.036270 0.0662 0.065300 0.013595
0.0040 0.003695 0.076250 0.0704 0.063152 0.102955
0.0095 0.009558 -0.006110 0.0872 0.087092 0.001239
Input Hidden layer Output layer Output

Fig. 3: Proposed NN architecture for MAF
RESULTS AND DISCUSSION

The Model of RBFNN and ANN that proposed to
predict the MRR gave a result of output that nearly closer
to the targets with correlation (0.955174) for the RBFNN
and (0.965254) for ANN while the SR with correlation
(0.931547) for the RBFNN and (0.942041) for ANN. The
line chart for MRR and SR are shown i Fig. 4 and 5 along
with the different mput parameters by RBFNN and
ANN. The error percentage for MRR is around
between (-0.11366) minimum and (0.08569) maximum for
RBFNN, (-0.06143) mimmum and (0.02286) maximum for
ANN. MRR correlates with the cutting velocity and

amplitude of pole geometry. Whereas the error percentage
for SR (-0.09543) minimum and (0.095749) maximum for
RBFNN, (-0.02142) minimum and (0.02729) maximum for
ANN. SR correlates with the mput parameters working
gap and current.

The ANN is the greatest tool for the predictive values
of ATSI 316 SS by MAF. Here, MRR leads to increase,
noticeably showing a rise in cutung velocity for any
specified value of the amplitude of pole geometry perfect
instance. Thus, maximum MRR is received at an amplitude
of pole geometry and cutting velocity (Fig. 6). High
temperature of work piece produces with the mcrease in
cutting velocity that grounds many materials. The SR

7956



J. Eng. Applied Sci., 12 {Special Issue 6): 7951-7958, 2017
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RBFNN

0.020 |

ANN

0.015

MRR (g)

0.010

0.000
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Process parameters

Fig. 4: Line chart of MRR for AISI 316 SS
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Fig. 5: Line chart of SR for AISI 316 5SS

VEGA] TESCAN

b
SEM HV: 200KV |

View flold: 41.5 pm Det: SE

SEM MAG: 5.00kx  Date(midly): 04/22/17 | SEM MAG: 5.00 kx

Date{midy): 04/22117 Performance in nanospace

Fig. 6: SEM snap of AISI 316 SS at condition: a) SEM snap at condition: A =2,B=700,C=12, D=2 E=1,F =16,
SR=0.0872 pm; b) SEM snap at conditton: A =2, B=700,C=12,D=6,E=3,F =16, SR = 0.0862 pm
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value decreases with the increase of working gap and
current while keeping the other factors constant at their
middle levels, more specifically can decrease from
0.0872-0.0862 pm as shown in Fig. 6.

CONCLUSION

The prediction of MAF response parameters 1s made
by conducting experiments on ATST 316 S8 using RBFNN
and ANN. Various levels of input process parameters
have been taken mto consideration depending on the Box
Behnken design of MAF machine to carry out the
experiments. In order to predict the object, RBFNN and
ANN Models have been built with the aid of
experimental results. Depending on the above two
methods, 1t 13 concluded that the maximum error attained
in RBFNN Model is 0.08569 and in ANN Model is
0.02286 for MRR whereas for SR is 0.095749 and
0.02729 m RBFNN and ANN, respectively. Eventually,
it 18 evidenced that the network’s model created using
ANN’s gives optimum values compared to RBFNN
Model.
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