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Analytical Investigation of the Dynamic Response of a Timoshenko Thin-Walled
Beam with Asymmetric Cross Section under Deterministic Loads
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Abstract: The objective of the present study is to analyze dynamic response of the Timoshenko thin-walled
beam with coupled bending and torsional vibrations under determimstic loads. The govermng differential
equations 1s obtained by using Hamilton’s principle. The Tunoshenko beam theory 1s employed and the effects
of shear deformations, rotary nertia and warping stiffness are included in the present formulations. Dynamic
features of underlined beam are obtained using free vibration analysis. For this purpose, the dynamic stiffness
matrix method 1s used. Applying exact dynamic stiffness matrix method on the movement differential equations
leads to the 1ssue of nonlinear eigenvalue problem that Wittrick-Williams algorithm is used to solve it.
Orthogonality property of vibrational modes are extracted by applying differential equations of motion. The
theoretical expressions for the displacement response of thin-walled beams subjected to concentrated or
distributed loads are presented. The numerical results for dynamic flexural displacements, rotational
displacements and torsional displacements are given. The proposed theory 1s fairly general and can be used
for thin-walled beam assemblage of arbitrary boundary conditions subjected to various kinds of deterministic

loads.
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INTRODUCTION

Thin-walled elastic beams offer high performance in
terms of minimum weight for a given strength, hence they
are used widely in the structures
industries. However, the shear center and centroid of
typical cross-sections for mono-symmetric and
asymmetric thin-walled beams are not coincident. This
leads to relatively complex structural behavior due to
coupling between the bending and torsional modes and
ultimately difficulties m establishing an accurate
prediction of their dynamic characteristics.

The development of an exact dynamic stiffness
matrix to model the coupled flexural-torsional motion of
thin-walled beams has been of interest to researchers for
a number of years. The method is deemed to be “exact’,
since, it is derived from the closed form analytical solution
of the governing differential equations and does not
therefore rely on assumed shape functions, as in the fimte
element technicque. Over the last few years, many studies
have been performed in the field of formulation of
Dynamic Stiffness Matrix (DSM) of beams. The dynamic
stiffness matrix of a Timoshenko beam was investigated
by Cheng (1970) for the first time. Howson and Williams
(1973) considered the effect of axial load on the natural

and aerospace

frequencies of Timoshenko beam. Banerjee (1989) studied
@ beam with a section having one axis of symmetry and
derived some explicit terms for the stiffness matrix arrays
regardless of axial load effect. Banerjee and Williams
(1992) mvestigated dynamic stiffness matrix for coupled
flexural-torsional vibration of Timoshenkoe beam.
Banerjee et al. (1996) studied warping effect on the
formulation of dynamic stiffness matrix. Bercin and
Tanaka (1997)
vibrations of umiform beam having single symmetric
section, considering conventional support conditions.
Li et al (2004a, b) denived the free vibrations of
thin-walled Timoshenko beam under axial load in

surveyed coupled flexural-torsional

which the effects of axial load, warping stiffness, shear
deformation and rotational mertia were taken mto
consideration and it was used from continuous model.
Rafezy and Howson (2006) derived the dynamic stiffness
matrix of a 3-Dimensional (3D) shear-torsion beam
with an asymmetric cross-section. The beam had the
unusual theoretical property, so that, it allowed only
for shear deformation but not bending deformation.
Ghandi et al. (2012) replaced Euler-Bernoulli theory
with Timoshenko theory when the external layer of
thin-walled beam 1s modeled and they assumed that the
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thin-walled part of the beam could have either open or
closed section shape and would create flexural, shear,
warping and Saint-Venant rigidities. Ghandi et al. (2015)
also derived the dynamic stiffness matrix of uniform beam
with asymmetric cross section and elastic support under
axial load. The mentioned beam was consisted of an
external enclosed thin-walled layer that was combined
with a shear resistant filled core. Ghandi and Shir1 (2017)
investigated the effect of the eccentricity of axial load on
the natural frequencies of asymmetric thin-walled beams
using exact dynamic stiffness matrix method. Many
researches have been performed in the field of the
response of beams with symmetric cross-section
subjected to deterministic and random dynamic loads.
Eslimi-Esfaham ef al. (1996) analytically investigated the
dynamic response of beam with coupled flexural-torsional
vibration subjected to deterministic and stochastic
dynamic loads for the first time. In another study,
Eshmy-Isfahany and Banerjee (1996) analytically
calculated dynamic response of beam with constant axial
load with coupled flexural-torsional vibration under
definitive and stochastic dynamic loads by using modal
analysis method. Li et af. (2004a, b) derived an explicit
term for dynamic respomse of single symmetric
Timoshenko beam subjected to stochastic excitations. In
the following of the previous research, Jun et al. (2004)
derived the effects of axial load n the calculation of
dynamic response of single symmetric Timoshenko beam
against stochastic excitations.

In most of these researches, cross-section of the
beam was mono-symmetric and Euler-Bernouli theory 1s
used to model bending of beam. Moreover, to model beam
bending, Euler-Bernouli theory is not capable of
producing correct results when beams with large sections
compared to their lengths or extraction of natural
frequencies of higher modes are under study. In such

@

4

conditions, Timoshenko beam theory in which shear
deformation and rotary inertia parameters are considered
should be employed. In this study, considering the effect
of defimtive dynamic load, the analytical dynamic
response of 3D flexural-torsional beam with asymmetric
cross-section will be investigated by the help of exact
dynamic stiftness matrix and modal analysis methods.

MATERIALS AND METHODS

Theory: The cross-section of the intended beam 1s shown
in Fig. 1. This beam 1s a umuform 3D beam with asymmetric
cross-section. The Timoshenko beam theory is used for
modeling the bending beam. This beam has flexural
rigidities of Bl and El, in x-z and y-z planes, torsional
warpmng rigidity of EI, , torsional Saint-Venant rigidity of
GJ, and shear rigidities of G.A, and G.A, where G, is shear
modulus, T, is the section torsional constant and A, and
A, are equivalent shear section m x and y directions,
respectively. In Fig. 1, the center of gravity 1s denoted by
C, shear center is shown by O. The axes crossing the
center of gravity and shear center are known as mass axis
and bending axis, respectively. The origin of the
coordinate system 1s placed at O, x and y-axis are n the
direction of main axes of the cross-section and z-axis is
coincided with the bending axis. The beam total mass is
distributed along it’s length as wniform distributed load
and m 1s the bearn mass per umt length. The external loads
applied on the thin-walled beam are including unit length
forces f, (zt) and £, (zt) which are applied on the bending
axis, respectively n the directions of x and y-axis, umt
length bending moment m, (z, t) n the x-z plane
around y-axis, unit length bending moment m,, (z, t) in the
y-z plane around x-axis and also umt length torsion
moment g(z, t) that is applied around the bending axis

(Fig. 2).

®)

Fig. 1: &) 3D thin-walled beam with a length of L and asymmetric section and b) deformed shape of the cross-section after

translational and torsional displacements
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Fig. 2: Externally applied loads on a thin-walled beam

The differential equations governing the beam
moment are as five coupled partial differential equations
that are defined as bellow:

2 2 2
ma u(z,t)_my 0 ¢(Z,t)_GtAm ad u(z,t)+

ot? ©ooor 0z )
ga, Bl gy
dz
2 2 2
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L
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RESULTS AND DISCUSSION

Free vibration analysis: In order to determine natural
frequencies and vibration modes, it 1s required to perform
the undamped free vibration analysis of the system. For
this purpose, the external applying forces are considered
equal to zero and thus, the above equations could be
written as follows:

2 2 2
ma u(z,t)_m d q)(z,t)_G A 0 u(z,t)+

ar g v gy ©)

G.A, 28 (z1) o
oz
2 2 2

ma v(?t)_’_ :8 q)(?,t)_GtAwa V(f’t)+

ot at oz (7)
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du(zt)
0z | ®

2 2
oL ? Bx(zz,t) B Bx(zz,t)
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G.AB. (zt)=0

-GtAxt

2°0.(zt) 270, (z.1) ov(zt)
pl, gtz -El ayzz Gy, 9z N (%
G,A, B (zt)=0

2 2 2
d°u(zt) rmx, 0 v(z,t)Jr e °Yzt)

oot ot "o (10)
z 4
L CONE S O
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In order to analyze the free vibration, the answers of
u(z ) v(zt),0,(zt),0,and ¢ (2 t) are written as
follows:

w(z,t)=U (z)e™, v(z t) =V (z)e™, B, (z,t) =0 _(z)e™
0,(zt) =0, (z)e"", ¢z t) =D, (7)™’
(11)
In the above relations, r = 1, 2, 3, ..., represents the

vibrational mode number. Substituting Eq. 3 into Eq. 2
gives:

2
_mmi Ur(Z)erycmﬁ D (2)-G,A, d Urz(Z) +
dz (12)
de
GtAxt Xr(Z) = O
dz
2
-maey V,(z)-mx o @ (2)-G,A,, d V,Z(Z) +
dz (13)
de_(z)
GA, ;Z =0
d'e_(z) du, (z)
3 iy - r
PLOL O (ZEL — = GAL— 2= (1)

G,A B _(z)=0
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&8, (2)

dz’

dVr( )
” d;* (15)

-pLex O, (2)-El, -G.A

A0 (z)=0

my, o U (z)-mx o V.(z)-mr oy O _(z)-

E0(2) L D)
GtJt ] I[u ]
dz dz

(16)
=0

By applying the dynamic stiffness matrix methed on
above goverming differential equations, we can obtain the
natural frequencies and mode shapes. For this purpose
refer to the Ghandi et al. (2012), Ghandi and Shiri (2017) ,
Howson and Williams (1973).

Extraction of the orthogonality properties: A most
significant property of the mode shapes is that they form
a set of orthogonal mathematical functions. To analyze
the forced vibrations, the orthogonality condition would
have to be used. The orthogonality conditions apply to
any two different modes they do not apply to two modes
having the same frequency. For discrete systems, the
orthogonality conditions are available mn all references
related to the dynamics of structures. The studied beam
in this study is a distributed properties system. The
vibration mode shapes derived for beams with distributed
properties have orthogonality relationships equivalent to
those for the discrete parameter systems. Orthogonality
conditions for three-dimensional asymmetric thin-walled
Timoshenko beam 13 derived m this study as follows:
Substituting Eq. 14 into 12 and also Eq. 15 into 13 gives:

, _
-moy U (zHmy,w @, (2) =-| pl,oy 2 48, (Z) XCl®xr3(z)
dz dz ]
(17
de (z) 4’6 _(z) ]
= (DZV - (qu) __ I(D I -
mo e S { T dz g7
(18)

Multiplying Eq. 17 by U, (z) (sth vibrational mode)
and integrating with respect to 7, gives:

- ij (2)U, (z)dz+o] J.myc(z)U (2)9, (z)dz =
(19)

L
: 49, (z) 4’9 _(z)
[ ElL = u d
I{p O] IR 2 U, (7)d7
If the last mtegration in this equation is performed by
parts, it is found to give:

2
L
i {EIX 800, plxmf@)x,(z)}us(z) +
Z

0
7 d*e_(z)

EI, —=" 4p]
J[ =4 P

0

(20)

'@ (z)}wdz
dz

The integrated term is nil because thcontents of the
square brackets is equal to the shear force which vanishes
at the boundaries z = O and z = L. the integral may agamn be
evaluated by parts to give:

d@xr(z)) dU, (z)
dz dz

()

;-TEIX do,(zd’U (z)d .

(EI > o
Z Z (21)

8 Iplx@)xr( =

And agam the mtegrated term vamshes since, the
bracketed term 1s equal to bending moment which 1s zero
at the extremities, so finally the Eq. 19 15 expressed as
follows:

-0y _TmUr (Z)U (2) dz+oof_]i‘myccbr(z)US (z)dz =
(22)
T 1, 4€a(2) de_(z)d’U () du (z) s

LD, o6 O

1]

Similarly, the solving stages begin with the Eq. 17
rewrites for the sth mode and multiplied throughout by
(rth vibrational mode) and by following the same steps it
gives:

-me.mUS(z)Ur(z) dz+cnf_|'myctbs(z)Ur(z)dz =
(23)

VD g0 ijﬁXS( 2y,

jEIX de_(z) d*U (z)
dz dz?

0

If the last two equations are subtracted, it is now
found that:

(o)) [mU (2)U, (2)dz-e! [my D, (2)U, (z)dz+

48, (2)d°U,(z)_

L L 7
o [my.®, (DU, (2dz =[EL| 97 T gz 24)
! ) 4o, ) d°U ()
dz dz*
( du (Z)

L
cnf_[plx®xr(z) dzto ijX@)XS( )
0
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By performing similar operation for Eq. 18 the
following result is finally obtained:
L L
mf-mj)jmvr(z)vs(z)dzmﬁjmxcqar(z)vs(z)dz-

o] Imx & (2)V.(2)dz T EI (d® () dV,(2)

dz  dzf (25)
d®, (z) d*V (z) ( )
L '!.ply@)yr( i A
mf'ul.ply@)ys(z)%dz

By dividing Eq. 14 and 15 to find that:

r 2
WD g o o1, Y02 e ) G A,
dz dz?

(26)

dVr(Z):® (2)- {EI L(Z)-&-pl (D@ (Z)}/GA :|
dz w | YoodZ

(27)

When Eq. 26 is differentiated with respect to =z,
multiplied by Ei, 4o _ (;y/4; and then mtegrated with respect
to z, finally it gives:

L
[e1, d8=@ U@, IEI 40,()d0, (),
o dz dz’ dz dz
2 2
LEL d @sz(z) I d @st(z)
_[ dz dz dz+ (28)
i} GtAXt
2
Lpl, © _(z)EL, dei’“z(z)
(DZ_[ dZ dZ

GtAXt

0

When the suffices r and s in this last equation are
interchanged it is found that:

L
J-EIX de_(z) d*U (z)d 7IEI d@m(z) d®‘“(z)dz+
d dz dz* dz dz

LI d* e, (7) EI d’ @sz(z)
J‘ dz* dz

1} GtAxt

dz+ (29)

2
Lpl, @ (el 0P
mi_[ dz” 4,
o GtAXt

Subtraction now reveals that:

jEI (d® (2 4'V,(2) d0,(n) IV, (@) _
dz* dz* dz*
2
Lplx@)xs(Z)EI d@i}ig(z)
mSI dz dz- (30)
1] GtAXt
2
LpL@_(Z)EI d ®X52(Z)
(nr_[ dz” g4,
1] GtAXt

By performing similar operation for Eq. 27, the
following result is finally obtained:

T g1 (39 dV.(2) d0,(2) dV.(2)
. dz dz* dz dz*

d'e,(z)
Lply@)ys( )EI T
oy Z—dz-
i GtAyt

de,(z)
Lply@)yr( )EI T
o Z _ dz
0 GtAy‘t

Vdz =

(31

Multiply Eq. 26 tlwoughout by «’pLe,(z and
integrate with respect to z. This gives:

ot fpr,e, (2 j PLO,, (2)O, (2)dz-

El M
mz © dz
¢ GA,

I(pl e, 10.0)

pIx@)xs(Z) (32)

2.2
dz-m o

Interchanging r and s gives:

o Iplx@xr( 7= ( )

d*®
L EIX dxsz(Z)
mZ
”n G A

" Tt

j(plx)2 0,210, 4
GtAXt

dz 703J.plx®xr(z)® (7)dz-

PO, (2) (33)

2 o2
dz-em; oy

When these last two equations are subtracted they give:
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wjpl 0,042 I 16,020

(wi—wﬁ)jmx@m(z)@ (2)dz-

2

L 2200 6 ) 34
(DSZJ. dz dz+

1} GtAXt

dI'O_(z
LEL d“z( Lp1,6,.(2)

o’ Z dz

1} GtAXt

Multiply Eg. 27 throughout by mimy@ys(z) and

integrate with respect to z. this gives:

mjjply@ys(z) LAVSCIR jpl@ (20, (z)dz-

L EI M pl. ©® (Z) L
N AP L CCLIC
" Gy “ i

(35)

When the suffices r and s in this last equation are
mterchanged 1t 1s found that:

dv.(z)
¥y dZ yys

L
dz=cf [pL,®,.(2)0,, (z)dz
i}

4@, (z)
LI . ply@)yr(z) ]-(pl ) @Ys (2)6,(2) |

7o d
%A,

1]

(36)
Subtraction now reveals that:
L
dV (z
mjjply@ys(z) ( dz-o jpl ® (z)%dz:
i}
(mi-mf)Ip1y®yr(z)®ys<z)dz-m§
0
a'e
LEL WZ(Z) PLE, (2)
I dz dz+
! GA,
2
d'e,
B =) (Z) pL®, ()
c:JfI dz
0 GtAyt
(37)

If Eq. 30 and 34 are now added together, they give:
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<w§—wf)jplx®x,(z>® (z)dz =

IEI (d@) (z) dUZ(Z) e, (z) d'U (Z)) 2+ (38)
dz dz d#

Also, if Eq. 31 and 37 are now added together
they give:

(-0 )_T pL®,. (210 (z)dz=

J-Ely(d(ayr(z) d Vsz(z)_d(@ [(2) de(z)) e (39)
0 dz dz dz dz

L L
o fp1,0, ("2 ( ) Z-wffply(@y,(z)mdz

0 0 dz

Comparison of Eq. 38 with that of Eq. 24 reveals that:

(o] 0o )Tplﬁxr(z)@ (2)dz = (- )TmU,(z)sz)dz-
mf ].myCCDr(Z)US (z)dz+ mf j.myECIDS (z)U _(z)dz

(40)
Also, comparison of Eq. 39 with 25, found that:

(-0 pLO,.(2)0,, (2)dz = (! w)) [ mV,(2)V,(z)dz+

L L
o] [mx, @, (7)V,(7)d7- 0 [mx @,(7) V,(7)dz
0 0

(41)

In this step, the Eq. 16 1s written for the rth and sth

modes, multiply these throughout @, (z) and @, (z) and
integrate with respect to z. Finally it gives:

(wf-ef)[mt @ (2),(z)dz+
mxc{mfJ.Vr(z)qls(z)dz—mfJ.Vs(z)qlr(z)dz}— (42)

my, {mﬁj‘ U, (z)® (z)dz-o) _TUS(Z) P (z)dz } =

Equation 40-42 may be added together to give:
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(o) —mj)j.[(mrj@r(z)@S(z)erVr 2V, () +

mU, (Z)U,(Z)+pL,0, (2)0,,(2)+p,0 . (2)8, (7) )+
mx, (V,(2)®,(2)+V,(2)D () )my (U (2)D, (z)+

U.(2)®,(z))] dz=0
(43)

We, therefore, reach orthogonality condition for
different mode shapes of the thin-walled Timoshenko
beams with asymmetric cross-section as follows:

X R RS v ys

L
(of-o) [[(mr, @, +mV,V, + mU, U, }#pI,8, O, +p1O O+
0

mx, (V,@,+V,®, kmy, (U,®, +U,3)]|dz=p.3,
(44)

Where , the generalized mass in the rth mode is &, is
the Kronecker delta function.

With the free vibration natural frequencies, mode
shapes and orthogonality condition described above,
now we can calculate dynamic response of the
Timoshenko thin-walled beam under determimistic
loads.

Dynamic response analytical calculation: Now, the partial
differential Eq. 1 are taken into consideration that are
required to be solved for the applied external forces
of f.(z, t), f(z 1), m,(z t) and g(z t). Assuming that the
eigenvalue problem is solved for extracting natural
frequencies and modes, the response against the applied
loads 1s obtained from linear combination of the modes as
follows:

u(zt) :2 q,(t) U, (2) (45)
¥(z, t) :2 q,(t) V.(z) (46)
0.(20=3 400, (47)
8,(z1) = qu(t)(@w(z) (48)
¢ (=Yg, (49)

r=1

In the above equations, q(t) 1s the modal coordinate
(time coordinate) of the rth mode. As a result, the

responses u (z, t), v (z, 1), 6,(z 1), ¢ (= t) and are defined
as the total participation effects of each mode. The rth
term in the series of Hq. 31 represents the participation
rate of the rth mode.

Substituting Eq. 45 mnto Eq. 1 gives the equation as
the following:

2z

- B d*u
mU, g, (t)-my, P, q, (t)-G, A, —Fq, (D)+

o 2
o dz ~£,E
- GtAxtixrqr(t)
dz
(50)
. . a*v, |
- mVr q; (t)+mcq)r q; (t)_GtAyt 2r q, (t)+
dz B
Yy =f, &0
pry de,
GfAquf(t) |
(51)
i B} &' du 1
= pl.e t)-EI 2 (O-G A, —Eq (O+
2 px xrqr() b4 de qr() 1t hgt dz qr() :mx(é,t)
T1GA,0,q,1 ]
(52)
i d’'e dv ]
= pl @ g (t)-El T aq. (O)-G A L (t)+
> PHOR AL 7y PR 0T e
1 G.A,0,4q.00 |
(53)
- | -y, Ur qr (t)+mxcvn qr (t)+mn21q)r qr (t)_
dZ(IJr a4 D, =g(&t)
= GtJthr(t)JrEIWqu(t)
(54)

Substituting Eq. 12 into Eq. 50 gives:

3 {m(ur-ycda)qr(mmmi<Ur-yc®r)qr(t>}:fx@,t)
(55)
|:Ir1('\/"r +x,P g+ m(Di (V, + ch)r)qr(t):| = fy(f“;,t)
(56)
3 01,0, 6,0+ pl,e¥0,4, (t)} Sm, G 6T

=1

D1

,‘
Il

=

pLO,_ 4. (1)+ plymi(awqr(t)} =m_(&,t) (58)

Ngk

.‘
Il

(mey (x,V,y, U, +12® )q, (O)+

e

]—g(a,t) (59)

_,
1

Lm(x, Vv, U 4@ )d, (1)

In this step, each sentence of Eq. 55 in U, each
sentence of Eq. 36 n V each sentence of Eq. 57 in @,
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each sentence of Eq. 58 in ©,, and each sentence of Eq. 59
is multiplied in @, and integrate throughout the beam.
After adding the obtained equations, gives the equation
as following:

UT®S)+XC((DYVS +qu)s)

>, (t)fme {

UTUS+VTVS +rﬂzl (DT(DS-YE((DrUS +}
dz+

< i i UI’US+V1’VS +rl’fl ®l’(bS-YC((bl’USJr

qu(t)jm dz+

r=1 il Ur®5)+xc(®rvs +qu35)

o L
Yaq, (t)joof PL,0,.6_ +pl O O )dz+ (60)

zr T xS
0

r=1

o L

Y Q. 0[(,0.0, 10,0, )d7=
r=1 0

LI, (6 DU, (G OV, +m, €08, +
‘!- mY(a’t)®ys+g(é:t)qDS z

Equation 60 can be expressed i the following matrix
form:

B , 5 Lz, OU A (2 ) V +m, (z,0)8, +
(@, (0 ralq, (D) = — { }z

W, 3| m,(z, )0 +e(z,t)D,
61)
By mtroducing the following parameters:
L[t (20U, (2dz=F,0) (62)
“‘r 1}
1 [ £,z 0V(zdz=F, 1) (63)
Mg
1 [ m,z 18, (2dz =M, (1) (64)
L [ m,@te, @dz=M, 1 (65)
1 [ gtz®@dz=G, 1) (66)
M'r 1}

Now, Eq. 61 15 rewritten as follows:

.0+ efq, (1) =, (0 +F, (0O+ M, (D +M_(D)+ G (1)
(67)

Therefore, there are an infinite number of equations
similar to Eq. 67 and one equation for each mode. The
partial differential Eq. 1 for unknown functions u(z, t), v(z,
t), 0z, t) and ¢z t) are transferred inte an infinite
set of ordinary differential Eq. 67 in terms of ¢, (t)
unknowns.

For the applied dynamic loads off, (z t), £ (z t), m,
{zt), m,(z t) and g (z t) the unknown system functions
u(z, t), viz t), 6,(z t), 0,(z t) and Pz, t) could be
determined through solving the modal equations m terms
of g, (t). The equation of each mode 1s independent to the
other modes; thus, it could be solved separately. For
solving Eq. 67 which is as the form of movement equation
for Single Degree of Freedom (SDOF) system, it 1s used
from Duhamel’s integral. Therefore, the answer of Eq. 67
is defined as:

, 1t
q. (ty= (AI_ cos mrtJrBr sin (nrt)+m— (J; (Gr(r)ﬂ\/[ o (T)+ (68)
T

Mxr (I)JrFyr (1:)+FXI_ (T))sin w (t-T)dt

After determining q, (t) by using Eq. 31 and 68 system
response to arbitrary dynamic forces fi(z, t), fiz, t),
m.(z, t) myz, t) and g(z, t) is as follows:

Wzt =Y U, ((a, coswt+B, sin mrt)+ij (G (D)
r=1 0‘)1' 0
M_ (DM (T)+F, (T, (T)=sinom, (t-r)dr)
(69)

vizt) = Y V.2 (A, cosant + B, smmrt)+ij((}r(r)+
(Dr 0

M (THM (THE, (T+E, (Th)*sin o, (t-r)dt)
(70)

8,(z.t) = Y0, (20((A, cos t+B, sin mrt)JrLj.(Gr(r)Jr
r=1 m

M (DM (THE {T)+E, (T)<sin mr(t—r)dr)
(71)
8,zt)= 30, (A, coset+B,sin mrt)+ij(Gr(r)+
(Dr 0

M, (DM (TO+E, (T, (T)*sin (nr(t-r)dr)
(72)

RS - 1
Oz t) = Z (Dr(z)((Ar cose t+B, sino t)+ o {(Gr(m

M, (TH+M,, (THE, (THE, (D<sine, (+-1)dt)
(73)

8073



J. Eng. Applied Sci., 12 {Special Issue 7): 8066-8076, 2017

The obtained responses are useable for any arbitrary
deterministic loading. In the following, the response
agamst deterministic harmomc load 1s calculated using
Eq. 69 for instance.

In this part, it is assumed that the centralized
harmonic forces having F,; amplitudes are applied in the
direction of x axis in the points z = a, the forces with I,
amplitudes are applied in the direction of y axis in the
points z, bending moments having M, amplitudes are
applied in x-z plane around y axis and in the points z, = ¢,
bending moments with M,; amplitudes are applied in y-z
plane around x axis and m the points z= d and torsional
moments with G, amplitudes are applied around z axis and
inthe points z = e, where 1 =1, 2, 3, ..., N. The mentioned
applied loads are defined as follows:

f (z,t)=F, 8(z—a)sinem t (74)
f.(z,t)=F, 8(z—b )sine t (75)
m, (z,t)=M_8(z—c )sinmt (76)
m, (z,t) = M, 8(z — d)sino t (77)
g, (zt)=G,8(z—e )sinmt (78)

where is the rotational frequency of the applied loads.
In this state by using Eq. 60, the generalized loads
functions become as follows:

F, (z.t)= MiF U, (a,)sinay t (79)
F,.(zt)= u%Fyl V.(b,)sine t (80)
M, (7 1) :iMXi @_(c)sinm t (81)
M, (z,1) :MirMy, 8,.(d)sinm t (82)
G“(z,t):uiGl @ (e, )sinm t (83)

Finally, the response of u(z, t), v(z t), 0,z t),
B.(z t) and ¢z t) to assumed applying loads is as
follows:

ulz,t) = E U,(z)(A, coswt+B, sinm t+

YUY L (mUaprEvby

TREOREIORS]
M_© (¢ )+My1®yr(d, G, D (e, )sinmt

viz,t) = ZVr (z)(A_cosmt+B, sin 0th+2 V.(z)
r=1 r=1
1 1 (85)
Y (BU(a HFV, (b )+ M0, (¢)+
i M, (e -m ")

M@, (d)+G.® (e )sinot

0,(z.1) = E ®_ (z) (A, cosmt+B, sinmt+

r=1

o M 1
;em(z) ;m(FX,U,(a, HEV (b)+

1

(86)

M. ©_(c )-5-My‘(€)yr (d,+G, D (e )sinmt

0,(zt)= E @ (2} (A, cost+B sinw,t+

r=1
- N 1
e (Z) 7(F}qu(ai )+er(bl)+
; " g“r ((Drz_miz) ”
M@, (e M8 (d)+GDd (e )sinmt

(87)

Pz, t) = E D, (z) (A, cosmt+B sinmt+

r=1
- N 1
®(z)y ———(F.U (a @FEV.(b)+
rz::, L );Mr(mrz'w,z)( U 8 rE V. (b)
M0, (¢, )+M 0 (d)+G,P (e ))sin ot

(88)

Numerical results: The following example 1s presented in
order to validate the formulation proposed in the present
paper.

In this example, a thin-walled cantilever beam having
semicircular section with one axis of symmetry is
investigated. The physical and geometrical specifications
of the studied section are as follows (Fig. 3):

»  E=689%10°Nm"*
s I,=926x10%m"
+  [,=1.52x10"m’
»  x.=0.0155m

* y.=00m

o L =5998x10"m’
» m=0835kgxm’
+« L=08m

*+  (G=265x10°'Nm”
»  T=1.64x10"m"
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0.0245m

0.004 m
0.0155 m

Fig. 3: Beam cross-section used i numerical example

Table 1: The first five natural frequencies

Frequency order wirad/sec) f(HZ)

1 399.0379 63.5089
2 863.4747 137.4263
3 1733.2600 275.8580
4 3023.2400 481.1625
5 4020.2500 639.8936

In this example, 1t 1s assumed that unit harmonic
forces with umit amplitude are applied to the tip of the
cantilever bending
displacement, angles are
calculated at the cantilever beam tip under the applied
harmonic load with different frequencies. For calculating
the response, it 1s used from the first five modes of
vibration. Therefore, the first five bending-torsion

beam and the transitional

rotational and torsional

coupled natural frequencies and vibrating modes are first
calculated by the help of the dynamic stiffness matrix.
The calculated natural frequencies are presented in
Table 1.

Then, for each mode are calculated. For the first five
modes, the 1s as follows:

W, = 4.5044, 1, = 45453, u, =2.5601, , =3.6127, U, =4.7357

By using Eq. 84 and considermg F,=0,M, =0,
M,=0,G=0and I, = 1 as well as the location of the
point, b = 082 the
calculated at the cantilever edge pomt and plotted m the
semi-logarithmic diagrams of Fig. 4-6. In the mentioned
figures, the absolute magnitudes of the obtained values
are considered on the vertical axis which is a logarithmic
axis.

mtended responses  were

1.0E-02 -
1.0E-03
1.0E-04 -
_1.0E-05
H 1.0E06-
" 1.0E-07-
1.0E-08 <
1.0E-09-
1.0E-10

0 100 200 300 400
f(Hz)

Fig. 4. Dynamic transitional bending displacement of
thin-walled beam at its tip for different frequencies
of the applied load

1.0E-037
1.0B-047
1.0E-05 1
_ 1.OE-067
£ 1.08.071
®1.08-081
1.0E-091
1.0B-10-

1.0E-11 T T T
0 100 200 300 400
fiHz)

Fig. 5: Dynamic rotational bending displacement of
thin-walled beam at its tip for different frequencies
of the applied load

1.0E-021
1.0E-03
1.0E-041
. 1.0E-05-
£ 10806
© 108071
1.0E-08
1.0E-09-
1.0E-10

100 200 300 400
f(Hz)
Fig. 6: Dynamic torsional displacement of thin-walled

beam at its tip for different frequencies of the
applied load

CONCLUSION

In the present study, an analytical method is
proposed for determining the dynamic response of
asymmetric thin-walled beams subjected to different types
of centralized and distributed defimtive dynamic loads. In
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order to solve vibration problems, it has been used from
accurate dynamic stiffness matrix. Since the dynamic
stiffness matrix are derived from analytical solution of the
differential equations of movement, it makes 1t possible to
calculate natural frequencies and vibrating modes,
accurately and without any lost in the precision. The
natural frequencies and mode shapes are obta ned by
using Wittrick-Williams algorithm.

Due to considering the general shape of the beam
(i.e., a perfect asymmetric section), the mass and shear
centers are not coincident and thus, flexural and torsicnal
vibrations are dependent to each other. Accordingly,
determining the analytical response of the 3D thin-walled
beam with asymmetric against dynamic
deterministic loads 1s considered as a very complicated
problem. Using the introduced dynamic stiffness matrix in
combination with modal analysis method, it could be
overcome this complexity. By using the formulation
presented m this study, it could be derived the dynamic
response of members with arbitrary asymmetric section
and also with different boundary conditions under any
arbitrary applied definitive dynamic loading at various
points.

section
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