Study on Structural Behavior of Fly Ash and Quarry Sand in Concrete

P. Mohamed Rajab
Department of Harbour Engineering, AMET University, Chennai, India

Abstract

Concrete is one of the important construction material used in the world of all engineering works including the infrastructure development proved that it is a cheap material and its constituents are widely available in nature. Due to widespread usage and electric infrastructure development in all over the world, there is the shortage of cement. These materials are available with the high cost to prevent this cement can be replaced with waste materials. In this project research cement will replace by fly ash and quarry sand powder accordingly in the range of $0,5,10$ and 15% by weight of M-25 grade concrete. Concrete mixtures were prepared, tested and compared regarding compressive, split tensile and flexural strength to the conventional concrete. These tests were carried out to evaluate the strength properties for 7,14 and 28 days.

Key words: Fly ash, quarry sand, concrete, structural behaviour, project, flexural strength

INTRODUCTION

The geo-technical properties of bottom ash, pond ash and coarse fly ash allow it to use in the construction of embankments; structural fills reinforced fills low-lying area development, etc. The physicochemical properties of pond ash are similar to soil and it contains $\mathrm{P}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$, $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Mo}$ and Fe , etc. which are essential nutrients for plant growth (Rohini and Arularasi, 2016). These properties enable it to be used as a soil amender and source of micronutrients in agriculture/ soil amendment. Manufacture of ash bricks and other building products. Construction of road embankments, structural fills, low-lying area development. A soil amender in agriculture and wasteland development. This study review synthesis and characterization studies of ZnSe quantum dots are illustrated by Priya and Balasubramaian (2014) and horizontal transfer of chloramphenicol resistance plasmids from marine associated Pseudomonas sp. is explained by Saiyad et al. (2016).

Ordinary Portland Cement (OPC) is a product of four important mineralogical phases. These phases are tricalcium silicate-C $\mathrm{S}(3 \mathrm{CaO} . \mathrm{SiO})$, dicalcium silicate C $\mathrm{S}-(2 \mathrm{CaO} . \mathrm{SiO})$, tricalcium aluminate-C $\mathrm{A}(3 \mathrm{CaO} . \mathrm{AlO})$ and tetracalcium Alumino-Ferrite-C-AF(4CaO.Al O Fe O). The setting and hardening of the OPC take place as a result of a reaction between these important compounds and water (Yuvaraj, 2016). The response between these compounds and water are shown as under:

$$
2 \mathrm{C} 3 \mathrm{~S}+6 \mathrm{H} \rightarrow \mathrm{C} 3 \mathrm{~S} 2 \mathrm{H} 3+3 \mathrm{CH}
$$

Tricalcium silicate water C-S-H gel calcium hydroxide:

$$
2 \mathrm{C} 2 \mathrm{~S}+4 \mathrm{H} \rightarrow \mathrm{C} 3 \mathrm{~S} 2 \mathrm{H} 3+\mathrm{CH}
$$

dicalcium silicate+water C -S-H gel calcium hydroxide. The hydration rods from $\mathrm{C}_{3} \mathrm{~S}$ and $\mathrm{C}_{2} \mathrm{~S}$ are similar but a quantity of calcium hydroxide (lime) released is higher in $\mathrm{C}_{3} \mathrm{~S}$ as compared to $\mathrm{C}_{2} \mathrm{~S}$.

The reaction of $\mathrm{C}_{3} \mathrm{~A}$ with water takes place in the presence of sulfate ions supplied by dissolution of gypsum present in OPC. This response is swift and is shown as under biological control of sheath blight of rice using marine associated fluorescent pseudomonads has been explained by Subramani and Ramesh (2015):

$$
\mathrm{C} 3 \mathrm{~A}+3(\mathrm{CSH} 2)+2 \mathrm{H} \rightarrow \mathrm{C} 3 \mathrm{~A}(\mathrm{CS}) 3 \mathrm{H} 32
$$

Tricalcium allu min ate + gypsum+water \rightarrow ettringite

$$
\mathrm{C} 3 \mathrm{~A}+\mathrm{CSH} 2+10 \mathrm{H} \rightarrow \mathrm{C} 3 \mathrm{CSH} 12
$$

mono sulphoaluminate hydrate.

MATERIALS AND METHODS

The different diaries were gathered and considered on the incomplete substitution of the concrete by various materials. As indicated by these diaries the procedure of the examination and the strategy for the experimentation and the distinctive tests led in those diaries were contemplated and learned. On the premise of the investigations of the diaries gathered for the trial the exploratory technique for the venture was pick.

As indicated by the strategy taken after for the venture, the materials were gathered for the trial, the preparatory tests were directed to the materials to know the properties, for example, particular gravity, fineness modulus and the water ingestion. In view of these properties, the plan blend was done to know the amount of the materials required for the M25 Grade concrete.

Table 1: Test result for compressive strength of cubes
Average compressive strength ($\mathrm{N} / \mathrm{mm}^{2}$)

No. of curing days		Ceramic waste concrete (\%)		
	Plain concrete	5	10	15
7	20.44	23.72	24.86	27.30
14.00	24.77	25.90	28.32	32.97
$\underline{28.00}$	31.61	40.67	44.47	44.59

Table 2: Test result for flexural strength of beams
Average compressive strength ($\mathrm{N} / \mathrm{mm}^{2}$)

No. of curing days	Plain concrete	Ceramic waste concrete (\%)		
		5	10	15
7	3.46	2.78	2.85	3.05
14	4.28	3.29	4.32	4.52
28	5.86	5.61	6.53	6.81

The examples with the three distinct rates of the incomplete substitution of bond by flyash powder and quarry sand, for example, 5,10 and 15% alongside the control examples. The compressive, split and flexural quality of the examples were tried.

RESULTS AND DISCUSSION

The mix design was made for the M25 grade concrete with partial replacement of cement by fly ash powder and quarry sand with various percentages. The specimens were cast and tested. The test results are shown in Table 1 and 2 and in Fig. 1 and 2. Table 1 and Fig. 1 show the test results for compressive strength of cubes. Table 2 and Fig. 2 show the test results for flexural strength of beams. The maximum flexural strength for partial replacement of cement with fly ash powder and quarry dust is achieved by 20% is found to be greater than the conventional concrete. It reached maximum compressive strength when there is the partial replacement of cement with fly ash powder and quarry sand (20%). So, the maximum percentage of replacement of flash powder and quarry sand is 20%.

Fig. 2: Test result for flexural strength of beams

CONCLUSION

One of the approaches to enhancing manageability is to diminish the human utilization of normal assets. With a specific end goal to ensure the common assets for example, waterway sand, this investigation has recognized quarry clean which is a waste item from stone smashing industry and accessible free-of-cost as incomplete trade for stream sand. In view of this test examination, it is discovered that quarry clean can be utilized as an option material to the normal stream sand and can be presented as an utilitarian development material. The physical and concoction properties of quarry tidy fulfill the prerequisites of fine total. The examination recommends that stone tidy is very proper to be chosen as the substitution of fine total. Quarry clean can possibly give other option to fine total in this way limiting waste items and transfer issues related with it. The main real constraint is the decline in workability which can be overwhelmed by the utilization of fly slag or compound admixtures for example, super plasticizers which give high workability at a similar water substance.

REFERENCES

Priya, T.S. and V. Balasubramaian, 2014. Physiochemical studies on bio-active marine organism Streptomyces fradiae. Biosci Biotechnol. Res. Asia, 11: 323-329.
Rohini, I. and V. Arularasi, 2016. Effect of fly ASH and quarry dust as a partial replacement of cement and fine aggregate in concrete. Intl. J. Latest Res. Eng. Technol., 2: 15-33.
Saiyad, A., K. Prajapati, D. Chaudhari and T. Kauswala, 2016. Experimental study on use of quarry dust and fly ash with partial replacement of fine aggregates and cement in concrete. Global Res. Dev. J. Eng., 1: 92-96.

Subramani, T. and K.S. Ramesh, 2015. Experimental study on partial replacement of cement with fly ash and complete replacement of sand with M sand. Intl. J. Appl. Innov. Eng. Manage., 4: 313-322.

Yuvaraj, P., 2016. A partial replacement for coarse aggregate by sea shell and cement by lime in concrete. Imperial J. Interdiscip. Res., Vol. 2.

