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Abstract: The concept of context switching 15 extremely recognized m a multithreaded environment where
different tasks are scheduled to run on a uni-core platform. However, in real time systems the overhead caused
by the context switching is extremely crucial as missing the deadlines can cause serious hazards. This study
addresses the overhead of context switching through hardware approach using ARM cortex M4 based TM 4
C123 GH 6 PM controller. The cortex M4 architecture provides a concept called tail chaming which can reduce
the state that has to be saved and restored in the simultaneous occurrence of interrupts. The developed
scheduler is capable of implementing both static and dynamic scheduling policies with reduced context switch
overhead. The proposed scheduler implementation reduces the latency by reducing the context switch time to
6 clock cycles when compared to 46 clock cycles latency taken by a conventional real time operating system.
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INTRODUCTION

In a real time application development, the
implementation of the scheduler is crucial as it determines
the performance of the system. There exist various types
of schedulers defined by the rule they use to schedule the
tasks viz, round robin, long term and short term
schedulers, static and dynamic schedulers, etc. A variety
of scheduling policies are available today. Few of them
mclude: first come first service, shortest job first,
priority based schedulers, etc. Due to a number of reasons
priority based scheduling algorithms are popular m real
time systems but has one main disadvantage that low
priority tasks may undergo starvation.

The processor can service a task that requires its
resources by two approaches: polling and interrupt driven
request. The later approach is very much advantageous
since the occurrence of tasks 13 unpredictable and
servicing the tasks when they amrive saves lot of CPU
processing time. Almost all microcontrollers facilitate this
interrupt driven approach. The cortex M4 supports 16
exceptions out of which 3 have fixed priority and supports
up to 256 levels of programmable priority. Thus, it can
provide interrupt functionality for all the peripherals
available. All these interrupt requests are handled by the
Nested Vector Interrupt Controller (NVIC) which 1s
embedded m cortex-M4 processor (Yiu, 2013). In cortex
M4 when an exception takes place, the registers PC, PSR,

RO-R3, R12 and LR are pushed to the stack. In
conventional scheduler implementation viz., FreeRTOS,
Keil RTX and atom threads, pushing and popping of
registers need to be explicitly detailed using inline
assembly code while in the proposed method it is taken
care automatically by implementing tasks as interrupts in
cortex M4 controller, thus, lnding the details at the
programmer level. Also, the cortex M4 supports tail
chaining of interrupts. By taking advantage of this
feature, the proposed scheduler 1s implemented on the
controller which results in lesser latency for context
switches.

Literatue review: Reducing the overhead that is caused
by context switching 1s one of the most challenging and
researching areas in the field of real time systems. Some of
the significant research works carried out to reduce the
context switch overhead are discussed in the following
section.

Kumar et al. (2014) proposed an improved approach
to minimize context switching in round robin scheduling
algorithm. In order to resolve the problems of fixed time
quantum 1n round robimn algorithm and to reduce the
context switching they implemented a simplex method of
operations research. Carbone (2012) proposed Preemption
Threshold Scheduling (PTS) algorithm to reduce the
number of context switches. This algorithm establishes a
priority ceiling for disabling preemption where each
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running task is given a preemption threshold. In their
approach, the tasks with low priorities than the threshold
cammot preempt the currently executing task (Carbone,
2012). PTS has been extended to Earliest Deadline First
(EDF) scheduling (Wang and Saksena, 1999). The
computation of threshold by Carbone (2012) and Wang
and Saksena (1999) takes a worst case computation time
of O(m*). Lamie (1997) suggested that the number of
context switches performed also depends on the way the
individual threads are assigned priorities. RTOS overhead
15 reduced when multiple threads are run at the same
priority rather than rumming them at unique priorities.
Unnecessary context switches are also eliminated (Lamie,
1997). Computing the threshold values statically to
eliminate the ummecessary context switches are not
efficient to remove all the unwanted context switches.
This is achieved by computing the preemption threshold
values dynamically as by Paul and Pillai (201 1a). Also, in
the presence of common resowce sharing and task
synchronization, avoiding context switches are vital to
minimize the blocking times of the critical tasks. This is
addressed by Paul and Pillai (2011a) for uni-processors
and multi-processor platforms. Lavanya Dhanesh and
Murugesan in their research tried to reduce the interrupt
latency using a priority based Pre-emptive task
scheduling algorithm (Dhanesh and Murugesan, 2013).
Satosln  and shigeru mter-core  time
aggregation scheduler to reduce the overhead caused by
context switching (Yamada and Kusakabe, 2009).

In the previous approaches, the overhead of context

umplemented

switching 1s reduced by performing some optimization
techniques on the available existing algorithms. All these
are carried out at the software level. In this study, a
scheduler is presented that does not require modifying
the underlying processor architecture or instruction set of
the processor. It utilizes the processor hardware
architecture feature: tail chaining to effectively implement
a scheduler that can result in reduced number of clock
cycles for implementing the context switches. The
potential merits of the proposed scheduler are four fold:
reduction 1n software overhead, easiness in porting the
application from one platform to another, eliminate the
need of mline assemble code development and saves
memory.

MATERIALS AND METHODS

This study illustrates the conventional scheduler
implementation and introduces the concept of tail
chaining to implement the proposed scheduler with
reduced context switch overhead.

priority TRQ2
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Fig. 1: Tail chaining of exceptions

Conventional scheduler implementation: The traditional
ways mplements tasks as application tasks, each defined
with a separate TCB and the context switching is done by
saving the old tasks registers state in a stack and saving
the stack pomter in its TCB and updating the Program
Counter (PC) with the new tasks TCB. The total number of
clock cycles to perform the context switches ranges from
42-46 clock cycles in  conventional method of
implementation (Anonymous, 2017). Also, available RTOS
like free RTOS and Keil RTX takes 84 (RTELtd., 2010) and
<300 clock cycles respectively to perform the context
switching. The memory required for the tasks staclk is also
saved to a great extent with our implementation. In this
study, a scheduler that works on tail chamning of the
interrupts and implements the static and dynamic priority
assignment policies are presented.

Tail chaining: Tail-chaming 1s the process where the
interrupts that occurs simultaneously are serviced one
after the other without an additional overhead of state
saving and restoring. As there 1s no effect on the stack
contents, the pop and push of the eight registers is
skipped by the processor. Hence, the timing gap between
the two exception handlers 1s greatly reduced. There 1s
only 6-cycle latency when returning from the last ISR to
the new ISR as seen from Fig. 1. Scheduler 1s implemented
using this concept of tail chaining on ARM cortex M4
based TM 4C 123 GH 6 pm microcontroller.

Scheduler implementation: The proposed scheduler is
implemented with the following scheduling policies
viz., round robin, static and dynamic priority. Here, four
tasks are considered for scheduling. The functionalities of
these four tasks (tested with LED blinking) are handled as
the interrupt service routines of timer 1 A totimer 4 A
and the scheduler functionality is implemented using
timer 0 A.

Round robin scheduler: A round robin scheduler is
implemented to schedule the above four tasks using the
nested interrupt concept of the cortex M4 architecture.
The scheduler runs for every 1 sec. The first three
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Fig. 2: Round robin scheduler execution trace

tasks have thewr execution times | which 1s equal
to the scheduler period whereas the fourth task has
execution time more than the scheduler period Tt is
assumed that the second mstance of the task releases
only after its first mstance gets executed. The pseudo

code of the round robin scheduler 1s shown in

Algorithm 1.

Algorithm 1; Round robin based scheduler:
Timer 04 ISR () {

{
// scheduler

if ( (taskl period && execution of previous instance) is complete))
SetPending TRQ (TimerlA); //Task 1

else it ( (task2 period && execution of previous instance) is cormplete))
SetPending TRQ (Timer2A); //Task 2

else if ( (task2 period && execution of previous instance) is complete))
SetPending_IRQ (Timer3A); / Task 3

else if ( (task2 period && execution of previous instance) is complete))
RetPending TRQ (TimerdA); // Task 4

}

The tasks execution trace when scheduled 1n a round
robin fashion 1s shown n Fig. 2.

Static priority scheduler: Tn the second approach, the
same tasks are considered with varying execution times.
The priorities are assigned to these tasks prior to the start
of their execution and are assumed to be the same until
the end of execution and hence static priority assignment
policy. The tasks t1,, have their execution times greater
than that of the first task t, user defined priorities are
assigned to tasks where the least number corresponds to
a higher priority. The order of the occurrence of the
interrupts is assumed to be: T, ; followed by 1, and the
mterval between two instances of the same task 1s given
as the time period which 1s 4 sec.

The scheduler that is implemented behaves as a
priority based scheduler where the execution of the low
prionty tasks 1s affected by the lugh priority tasks. Here,

task T, is not scheduled due to the execution of other
higher prionty tasks i the system. The reason for this 1s:
execution of an exception can only be preempted by the
high priority exceptions. Hence when ISR1 and TSR2 are
being handled by the system even though the interrupts
3 and 4 occur they are only pended. Algorithm 2 shows
the pseudo code for static priority scheduler.

Algorithm 2; Static scheduler implementation:
int main()

{

SetPriority TimerlA (1, // Task 1 high priority

SetPriority Timer2A (2)

SetPriority Timer3A (3)

SetPriority_Timer4A (4); // Task 4 Low priority

Timer0OA_On ();

While (1); /Wait for interrpt

}

Dynamic priority scheduler: Tn order to prevent the
starvation of the low prionty tasks, priorities are assigned
to the tasks in a dynamic manner. The tasks priorities are
assigned as they are being executed The cortex M4
architecture of ARM facilitates this dynamic priority
assignment. Hence, m this approach, a scheduler that
assigns high priority to a task whenever 1t gets ready for
its execution is implemented. Also, a comparison is made

between the static priority and dynamic priority

assignment scheduling policies when executing the same
set of tasks. The scheduler based on the dynamic priority
assignment is shown in Algorithm 3 and 4 shows the
implementation of the TSR handlers.

Algorithm  3;

implementation:

Timer0A TSR () {

{

/f scheduler

if { (taskl period && execution of previous instance) is complete))
SetPriority TimerlA (1); // Task 1 High priority

SetPending TRQ (Timerl 4); // Task 1

else if ( (task2 period && execution of previous instance) is cormplete))
SetPriority Timer24 (1); // Task 2 High priority

SetPending_IRQ (Timer2A); / Task 2

else if' ( (task2 period && execution of previous instance) is comp lete))
SetPriority_Timer3A (1); // Task 3 High priority

SetPending_IRQ (Timer3A); // Task 3

else if' ( (task2 period && execution of previous instance) is comp lete))
SetPriority_Timer4A (1); // Task 4 High priority

SetPending TRQ (TimerdaA); // Task 4

}

Dynamic  priority  scheduler

Algorithm 4; Timer NA_ISR:
Timer NA_ISR()

{
SetPriority_TimerNA (4)
fMake taskl Low priority

}
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The tasks talen for this approach are same as that of
the static priority. The order of the occurrence of the
mterrupts 1s assumed to be: T,; followed by 1, In
comparison of static and dynamic priority scheduler
implementations, it can be observed that the task 4
gets executed, unless as in static scheduler which
failled to schedule task 4. Hence, for the same task
set given, the problem of starvation of the low
priority tasks produced by static priority assignment
policy is resolved by the dynamic priority assignment
approach.

RESULTS AND DISCUSSION

The results of the proposed scheduler
presented mm  thus  study.  The scheduler 1s
implemented using embedded C language and the TDE
used is TAR development workbench v7 and its
debug terminal YO window to view the results. The
hardware setup showing the execution of task T, is shown
in Fig. 3.

Figure 4 shows the workspace of the implementation
of the round robin scheduler. The debug terminal outputs

are

14 taaoks - (A3 Embedided Workbench 1€ - ARM 7801

for round robin, static and dynamic scheduler is
shown in Fig. 5-7, respectively. Thus, it is proved that the
output of the implemented scheduler based on tail
chaining matches the expected execution traces in each of
the cases.

Fig. 3: Task execution with preemptions on ARM cortex
M4
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Fig. 4: TAR embedded workbench showing round robin scheduler implementation
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Fig. 7: Dynamic priority scheduler
CONCLUSION

This study focus on reducing the time taken to
perform a context switch by introducing the concept
called tail chaining while scheduling the tasks. The tasks
functionalities are implemented as ISR’s. The tail chaining
1s available as a feature of the ARM cortex M4 processors
architecture. The scheduler developed can thus implement
round robin, static and dynamic priority scheduling
policies to schedule the tasks with a reduced context
switch overhead and can perform the context switch with
a latency of just 6 clock cycles whereas context switch in
conventional implementation takes about 46 clock cycles
and may go verse as 84 clock cycles in free RTOS and
around 300 in Keil RTX.

In this researcher, the target platform considered is
T™ 4C 123 GH 6 PM which supports 8 levels of
preemptions. By considering devices that supports 128
levels of preemptions, maximum of 128 tasks with different
priorities can be implemented and thus, enabling any
complex application implementation. Also, since, the
cortex M3 and M4 supports dynamic changing of priority
levels, the proposed dynamic scheduler can further be
implemented to satisfy existing dynamic scheduling
policies. When the scheduler period 1s less and the tasks
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have to be switched from one to another frequently, the
costs occur due to context switching are expensive. This
overhead can be reduced to a great extent by using the
proposed scheduler based on tail chaming without
changing the under lying architecture or hardware or
software features of the processor.
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