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Abstract: Over the past decade, deep learning has become a powerful machine learning algorithm in
the classification of climcal data for human conditions such as Alzheimer’s disease which can extract
low-to-high-level features. Classification of clinical data for Alzheimer’s disease has always been challenging
as there is no clinical test for Alzheimer’s disease. Doctors diagnose it by conducting assessments of patient’s
cognitive decline. But its particularly difficult for them to identify Mild Cognitive Impairment (MCT) at an early
stage when symptoms are less obvious. Also, 1t 15 difficult to predict whether MCI patients will develop
Alzheimer’s disease or not. The accurate diagnosis of Alzheimer’s disease n the early stage 1s mmportant in
order to take preventive measures and to reduce the progression and severity before irreversible brain damages
occur. This study gives the performance of different classifiers on deep learning neural network for Alzheimer’s
disease detection.
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INTRODUCTION

Alzheimer’s disease is a progressive and irreversible
neurological brain disorder. Tt is a disease that slowly
destroys bramn cells and thereby resulting in memory
losses and ultimately loss of the ability to carry out even
the simplest tasks. The cognitive decline caused by this
syndrome ultimately leads to dementia (Pan et af., 2015).
It 18 the most commeon form of dementia i adults aged 65
and older. The worldwide prevalence of AD was reported
26.6 million in 2006 and is expected to rise to over
100 million by 2050 (Nie et al., 2015; Yang et al., 2015).
The disease begms with mild deterioration and gets
progressively worse. Detecting Alzheimer’s disease by
psychologists requires very careful medical assessments
and physical and neurobiological exams.

Deep learning 1s a machine learming techmque that
allows computer programs to learn when exposed to new
data without being programmed (JTin et al, 2014).
Researchers have integrated deep learning methods with
special techniques that measure the wvarious brain
parameters to detect early forms of dementia such as Mild
Cognitive Impairment (MCT) (Alzheimer’s Association,
2014; Duchesne et al., 2009). The automated deep

machine learning program is trained to recognize pattermns
to distingush among patients with varying levels of
cognitive impairment and predict the various stages of
Alzheimer’s disease (Swarnalatha and Prasad, 2009). The
system was able to distinguish effectively among
participants with Alzheimer’s disease (Stonnington et al.,
2010). Recently, the researchers are able to successfully
predict the Alzheimer’s disease progression in patients
with a lngh degree of accuracy using various classifiers in
machine learming techniques. Figure 1 shows the
difference in the conventional learning algorithms and
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Fig. 1: Difference in the conventional learning algorithms
and deep neural networlk algorithms

Corresponding Author: A.J. Dinu, Noorul Islam University, Kumaraceil, Thuckalay, Tamil Nadu, India
8334



J. Eng. Applied Sci., 12 {Special Issue 8): 8334-8339, 2017

deep neural network algorithms. Machine learning
techniques other than deep learning uses various
algorithms to parse data, leam from it and make a
prediction out of the input data given. So, in order to
accomplish a particular task, the system is “trained” using
algorithms which provides the ability to learn and perform
the task (Zhou et al., 2011). Deep learmuing 1s a subset of
machine learming algorithms which uses cascade chams
of different processing units for feature extraction and
transformation. Each of the successive layers utilizes the
output from the previous layer as inputs (Kumar, 2013).
The algorithms used may be supervised for pattem
analysis applications and unsupervised for applications
includes classifications,

MATERIALS AND METHODS

Various methods of diagnosis of Alzheimer’s disease
using deep learning

Neural network: In Alzheimer disease, death of brain cells
occurs which results in memory loss. Early diagnosis
of AD is important for the control of the disease and
for preventing the loss of ability to camry out even
the siumplest tasks. Deep learning 1s a powerful
machine learning algorithm in classification that extracts
low-high-level features from MRI images (Yuan et al.,
2012). The recent deep learning neural network models
used for the detection of Alzheimer’s disease are as
follows.

Voxel based method using classifier ensembles:
Armananzas et al. (2017) proposed a voxel-based
diagnosis of Alzheimer’s disease using classifier
ensembles. The images were first pre-processed using the
statistical parametric mapping toolbox to output individual
maps of statistically activated voxels. A fast filter was
applied afterwards to select voxels commonly activated
across demented and nondemented groups. Four feature
ranking selection techniques were embedded mto a
wrapper scheme using an imer-outer loop for the
selection of relevant voxels. The classification accuracy
of the proposed method is 97.14%.

Discriminative sparse learning method with relational
regularization: Lei et al (2017) proposed a novel
discriminative sparse learning method with relational
regularization to jointly predict the clinical score and
classify AD disease stages using multimodal features. A
discriminative learning technique is applied to expand
the class specific difference and include geometric
information for selection. The

effective  feature

classification accuracy of the proposed method 1s 94.68%.

Grading biomarker using sparse representation
techniques: Tong et al. (2017) proposed A novel grading
biomarker for the prediction of conversion from mild
cognitive impairment to Alzheimer’s disease. Using the
Alzheimer’s Disease Neuroimaging TInitiative (ADNI)
dataset, the proposed global grading biomarker achieved
an area under the receiver operating characteristic
curve (AUJC) in the range of 79-81% for the prediction of
MCI-AD conversion within three years in tenfold cross
validations. The classification AUC further increases to
84-92% when age and cognitive measures are combined
with the proposed grading biomarker.

SVM and wavelet transform: Thakare and Pawar (2016)
developed Alzheimer disease detection Al system. In this
research using wavelet transform four features are
extracted and classification is done by support vector
machine. Tt gives an accuracy of 94%.

Shape-constrained regression-forest algorithm and
SVM: Zhang et al. (2016) proposed a landmark-based
feature extraction method based on based on a
shape-constraned regression-forest algorithm. The AD
classification accuracy 1s 83.7%.

Multimodal stacked deep polynomial networks: Shi et al.
(2017a, b) proposed a multimodal neuroimaging feature
learmng with multmedal stacked deep polynomial
networks for diagnosis of Alzheimer’s disease. This
method provides an accuracy of 97%.

Relationship induced multi-template learning: Liu et al.
(2016) introduced a relationship induced multi-template
learming for diagnosis of Alzheimer’s disease and mild
cognitive impairment. The classification accuracy is found
to be 93.06%.

Voxel-stand-D GM and SVM: Cuingnet ez al. (2011)
proposed an automatic classification of patients with
Alzhemmer’s disease from structural MRI. This method
uses voxel-stand-D GM along with SVM classifier. This
method gives an accuracy of 88.58%.

ROI GM and SVM: Zhang ef al. (2011) proposed a
multimodal classification of Alzheimer’s disease and mild
cognitive impairment using ROT GM and SVM classifier.
Experimental results provides an accuracy of 86.20%.

ROI-wise cortical thickness measurements and Linear
Discriminant Analysis (LDA): Eskildsen et al. (2013)
introduced a method for prediction of Alzheimer’s disease
with mild cognitive impairment from the ADNI cohort
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using patterns of cortical thinning. The classification
technique used for this method in linear discriminant
analysis. Accuracy rate is found to be 84.50%.

Voxel-wise GM and LDS: Moradi et al. (2015) proposed
a machine learming framework for early MRI-based
Alzheimer’s conversion prediction based on Voxel-wise
GM and LDS. Experimental results provide an accuracy of
83%.

Cortical thickness and PCA-LDA: Cho et al (2012)
proposed an mdividual subject classification for
Alzheimer’s disease based on incremental learning using
a spatial frequency representation of cortical thickness
data. The classification technique used i3 PCA-LDA
which gives an accuracy rate of 82%.

Voxel-wise GM and RVR: Gaser et af. (2013) proposed a
method for early detection of Alzheimer’s disease using
Voxel-wise GM and Relevant Vector Regression (RVR)
classifier. The accuracy rate is found to be 84.6%.

Tensor-base morphometry and linear regression:
Koikkalainen et al. (2011) mtroduced a multi-template
tensor-based morphometry for early diagnosis and
analysis of Alzheimer’s disease. The accuracy rate of this
method is 86%.

Multi method analysis using four MR features and LDA:
Wolz et af. (2011) put forward a multi-method analysis of
MRI images using four MR features in early diagnostics
of Alzheimer’s disease. The classification method used 1s
LDA and it gives an accuracy rate of 89%.

Data-driven ROI GM and SVM: Min et al. (2014)
proposed a multi-atlas based representations for
Alzheimer’s disease diagnosis using data-driven ROT GM
and SVM classifier. This method provides an accuracy
rate of 91%.

Data-driven ROTI GM and SVM ensemble: Liu et al.
(2015¢) introduced a view-centralized multi-atlas
classification for Alzheimer’s disease diagnosis using
data-driven ROI GM and SVM ensemble as classifier. The
experimental results provides an accuracy rate is 92.51%.

Predictive Markers and SVM: Hinrichs et al. (2011)
proposed predictive markers for AD in a multi-modality
framework which uses SVM classifiers. The accuracy rate
is 87.6%.

Ensemble random forests: Gray ef al. (2013) proposed
Random forest-based similarity measures for multi-modal
classification of Alzheimer’s disease. The accuracy rate
determined from experimental results is 89%.

Multimodal DBM and SVM: Suk et af. (2014) proposed a
Hierarchical feature representation and multimodal fusion
with deep learming for AD/MCI diagnosis. The accuracy
rate 1s 95.35%.

MKI.: Zhang et al (2011) introduced a multimodal
classification method for the detection of Alzheimer’s
disease and mild cogmitive impairment using MKL deep
learmng technology. The accuracy rate 1s found to be
93.20%.

SAE: Liu ef al. (2015a, b) put forward a multi-modal
neurcimagmng feature learning for multiclass diagnosis of
Alzheimer’s disease using Stacked Auto Encoders (SAE).
The accuracy rate obtained is 91.40%.

SDSAE: Shi ef al. (2017) proposed a nonlinear feature
transformation and deep fusion for Alzheimer’s disease
staging analysis using SDSAE. The accuracy rate is
91.95%.

NGF: Tong et al. (2017) proposed a multi-modal
classification of Alzheimer’s disease using Non-linear
Graph Fusion (NGF). The accuracy rate obtained is
91.80%.

Dropout-DL: 1. et al. (2015a) developed a robust deep
model for improved classification of AD/MCI patients
using Dropout-DL.. The accuracy rate is 91.40%
(Fig. 2).

Different recent deep learning techmques used for the
automatic diagnosis of Alzheimer’s disease is shown in
(Table 1).

Table 1: Algorithm comparisons-recent deep leaming techniques used for the automatic diagnosis of Alzheimer’s disease

Machine leaming techniques

Researchers Accuracy (%)

Statistical parametric mapping, Stochastic searches

SVM, SVC

Sparse representation techniques

DWT,SVM

Non-linear registration, shape-constrained regression-forest algorithm, SVM
Multi-modal stacked deep polynomial

Armananzas et . (2017) 97.14
Leiet d. (2017) 94.68
Tong et al. (2017) 92.00
Thakare and Pawar (2016) 94,00
Zhang et cd. (2016) 83.70
Shi et al. (2017a) 97.00
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Table 1: Continue

Machine leaming techniques Researchers Accuracy (%6)

Relationship induced multi-template learning Livet al. (2016) 93.06
Voxel-stand-D GM,SVM Cuingnet et . (2011) 88.58
ROI GM,SVM Zhang et al. (2011) 86.20
ROTI-wise cortical thickness, T.DA Eskildsen et of. (2013) 81.50
Voxel-wise GM,LDS Moradi et ad. (2015) 83.00
Cortical thickness, PCA-LDA Cho et al. (2012) 82.00
Voxel-wise GM, RVR Gaser ef al. (2013) 84.60
Tensor-base morphometry, linear regression Koikkalainen et af. (2011) 86.00
Four MR features, LDA Wolz et al. (2011) 89.00
Data-driven ROT GM, SVM Min et af. (2014) 91.00
Data-driven ROI GM, SVM ensemble Livet af. (2015b) 92.51
Predictive Markers, SVM Hinrichs et al. (2011) 87.60
Ensemble Random forests Gray et al. (2013) 89.00
Multimodal DBM, SVM Suk et af. (2014) 95.35
MEKL Zhang et al. (2011) 93.20
SAE Liu et af. (2015¢) 91.40
SDSAE Shi et ad. (2017b) 91.95
NGF Tong et ai. (2017) 91.80
Dropout-DL Liet al (2015) 91.40
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Statistical parameteric mapping, stochastic searches

7 ;) 75 8IO 8I5 9IO 9I5 1 60

Percentage

Fig. 2: Represents the plot of accuracy of different deep learning neural networks; accuracy values of different methods

RESULTS AND DISCUSSION

For diagnosis of Alzheimer’s disease, several deep
machine learning algorithms perform very well. From the
study, it 1s observed that voxel based method using
classifier ensembles and statistical parametric mapping for
stochastic searches offers highest accuracy rate of
97.14% for Alzheimer’s disease diagnosis. The AD
classification performance using nonlinear registration of

shape-constrained regression-forest algorithm and SVM
1s approximately 50 times faster than region-based and
voxel-based methods. Hence, it can be utilized for
large-scale subject indexing or retrieval. The numerical
accuracy results support the use of deep machme learning
approaches as an important tool to be mcluded m the
diagnoses of AD (Martinez-Martin and Avila, 2010;
Albu and Stanciu, 2015). In addition to these quantitative
approaches, several other types of climcal data are being
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collected by transnational efforts which aim to develop
early Alzheimer diagnosis tools (Risacher and Saylkin,
2013). In the long run, all clinical information should be
dynamically mntegrated at the pomt of care using
advanced machine learning approaches.

CONCLUSION

This study provides the comparative analysis of
different deep machine learning algorithms for diagnosis
of Alzheimer’s disease. It brings attention towards the
ability of deep machine learming algorithms that are
capable for the analysis of diseases and decision-making
process accordingly (Liu et al, 2015a, b). Many
algorithms have shown excellent results because they
identify the attributes accurately. From the study, it is
observed that voxel based method using classifier
ensembles using statistical parametric mapping and
stochastic searches offers lughest accuracy rate 97.14%
for Alzhemmer’s disease diagnosis. From analysis, it 1is
clear that almost all recent algorithms provide an
enhanced accuracy on the decision making process in
Alzheimer’s disease detection.
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