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High Order Robotics Arm Modelling Based on ANFIS Technique
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Abstract: Finding the reliable and precise solution for inverse kinematics is considered as one of the most
challenging problems in robotics manipulator. This is because the geometry of robot and the equations of
nonlinear trigonometric that characterize the relationship between the cartesian space and the joint space. Thus,
it has been a fertile area of research which has drawn researching efforts from various communities such as
operation research and artificial mtelligence. Additionally, solving this problem is necessary in real-time control.
In this study, we investigate the performance of a new hybrid technique n solving the problem of the mdustrial
manipulators inverse kinematics solution. The proposed hybrid technique combines an Artificial Neural
Networl (ANN) with fuzzy logic system (ANFIS). In order to evaluate the performance of the proposed model,
the simulation to identify the joints of 3 and 6-DOF robots are utilized. The sumulation results have showed the
effectiveness of the hybrid model in solving the problem of the inverse kinematics. This demonstrates that the
integration of the ANN and the fuzzy logic can fit the actual manipulator joints with an acceptable error.
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INTRODUCTION

The robot kinematics describes the motion behaviour
of the robot joints regardless the effects of the forces and
moments. Forward and inverse kinematics are the two
possible solutions for the robotics mamipulator. Forward
kinematics solution 1s to find the end-effector pose based
on the robotics joint parameters. Tn contrast, inverse
kinematics solution is to find the joint angles and
displacement based on the pose of the arm end-effector.
However, the inverse kinematics solution is more complex
than the forward kinematics solution. In this research, the
inverse kinematics modelling of the robotic manipulators
is considered.

There are several solutions of inverse kinematics were
distinguished such as iterative, algebraic, geometric and
analytic methods. An iterative method was presented by
Kostic et al. (2004) to calculate the inverse kinematics of
a RRR robotic manipulator. Barragan et al. (2014) an
interactive Bayesian identification method was introduced
to model the robotic mampulator mechanism type without
need to find the individual jomts. The common problem of
infeasibility in the inverse kinematics solution was
solved by Suleiman ef al. (2015). The presented algorithm
achieves good results when it was tested on the Baxter
research robot with the end-effector and joints speed
limitation was considered.

Latterly, researchers have made the artificial
intelligent based approaches a focus attention for inverse

kinematics solution. Considerable studies were aclhieved
to model the robotic manipulators inverse kinematics in
terms of artificial intelligent methods. An Artificial Neural
Network (ANN) approach was implemented to solve the
6-DOF Denso VP6242 robotic arm inverse kinematics by
Almusaw1 ef al. (2016) and 1t was also applied to find the
inverse kinematics solution of two or higher DOF robotics
manipulator by Daya et al. (2010). Duka (2014) a feed
forward ANN was proposed to identify the inverse
kinematics solution of a 3-DOF manipulator to be used in
the manipulator control phase.

Several artificial intelligent algorithms were tested in
simulation to identify the inverse kinematics of the 7-DOF
whole arm manipulator and 6-DOF Titan 1T Teleoperation
system by Barragan et al. (2014). These algorithms
showed a good performance m terms of low root mean
square error. Genetic algorithm is proposed to identify the
inverse kinematics solution of 4-DOF robotic system with
the help of fuzzy logic model by Bang ef al. (2009). The
results showed the effectiveness of combining the genetic
with the fuzzy logic techniques m optimizing the angles
and displacements of the robotic arm. The Genetic
algorithm was presented by Kouml (201 1) combined with
a neural network to model the mverse kinematics solution
of robotic arms. The identification errors were reduced to
micrometer level. Kenwright (2014) Genetic algorithms
were proposed to model the mverse kinematics
solution to be used m control of the manipulators
motion.
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In this study, the combination of the ANN and fuzzy
logic system was proposed to solve the problem of the
industrial mampulators inverse kinematics solution. The

proposed algorithm was tested in simulation to identify
the joints of 3 and 6-DOF robots.

MATERIALS AND METHODS

The robots mathematical model: Two spaces were
employed m kinematics mathematical modelling of robotic
manipulators, Cartesian and quaternion spaces. It has
been shown, the rotations of any rigid body can be
derived using different approaches to combine it is
translational and rotational dynamics such as, Euler
angles, quatermon and Tait-Bryan Newton-Euler based
Euler angles approach was widely used in this status but
it has three important drawbacks. Firstly, the Euler angles
representation of the attitude suffers from the singularity
problem which called “gimbal lock”. Smgularity problem
occurs by losing one degree of freedom of the attitude
when dividing the pitch angles 6 = £90 by zero. Secondly,
it 1s very slow in computation because it has sine and
cosine terms. Thirdly, the Jacobian cost function of the
system states requires long time in computation because
its matrices almost have at least sine or cosine in each
element which may lead to crush the system (Jasun and
Gu, 2014; Alothman et al., 2015). In this research, Euler
angles will be used to perform the rigid body rotation in
Cartesian space.

According to  the representations,
homogenous transformation based on orthogonal real
matrices of R™ has been widely used in robotics
representation. It was confirmed by Denavit and
Hartenberg (DH) that only four parameters were desired
for the transformation between any two robotic joints.
These DH four parameters the link length a; ,, the link twist
®,,, the link offset d; and the joint angle 6, have
mtroduced to be the standard way to represent the
robotic manipulators. In the followmg, two robotic
manipulators will be described to be identified based on
ANFIS.

above

RRR robotic arm: The first robotic manipulator to be
modelled is a 3-Revolute DOF RRR. It is wire frame
kinematic model is shown in Fig. 1 and it is DH parameters
are listed in Table 1. The robot tip cartesian positions x, v
and z are Kostic et al. (2004):

X= 00381(33 cos(0,+6, ) +a, 00382)+

(d,+d,)sin6,

(1)

Table 1: RRR manipulator DH parameters

i o (rad.) a;(m) 0 di(m)
1 ™2 0.000 0 0.560
2 0 0.200 <8 0.169
3 0 0415 2 0.090

Fig. 1: The RRR mampulator kinematic model

y =sinf, (a3 cos(6,+0, ) +a, cos 0, )—

(d2+d3)cos 8,

(2

zZ=a, sin(82+93)+azsin92 +d, (3)

And the inverse kinematics equations can be
calculated from Eq. 1-3 as:

win (X(dfrdz )*YVX2+Y2 -(4; 44, )2 ] )]

B =
x4y

1

1-{pi+p-ai-al)
(2a,a; )2 (5)

T, 1 .17 2
PhntPs23-35

atan | £

2a,a,

((aera3 cos0, )pv-a3 sin0, p, ) (6)

a,ta;cos 0, )phﬁ-a3 sind; p,

6, = atan

P, :\/(x —(d, +d,)sind, )2 +(y+ (d, +d,)cosB, )2 ()

p, = z-d, (8)

Six-DOF planar: The second robotic

manipulator to be modelled is a 6-DOF industrial planar

industrial
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Fig. 2: 6-DOF robotic manipulator kinematics

Table 2: 6-DOF manipulator DH parameters

i w(rad.) a;(im) ) di(m)
1 0 0.0000 6, 0.000
2 -T2 0.4318 0, 0.000
3 0 0.0190 0; 0.125
4 -T2 0.0000 N 0.432
5 2 0.0000 05 0.000
6 -T2 0.0000 0 0.000

shown in Fig. 2. The DH parameters are shown in Table 2.
The end-effector Cartesian coordinates are Kucuk and
Bingul (2006):

X =cos6, (az cos8, +a,cos8,, —d, sineza)—dasin@1 )
y =sinf, (a2 cos0,+a,cos0,,-d, sinb,, )+d3 co0s8, (10)
z=a,sinB,-a,sind,,-d, sin0,, (1)

And the inverse kinematic equations solved from Eq.
9-11 are:

0, = atan2(x, y)-atanZ(d3, Jxiyt-dl ) (12)

Y (13)
2a,

8, :atan2(a3,d4)—atan2(k,,/aieri-kz) (14)

7(-a;-a, cos 0, |-(xcos 6, +ysinf, ]
;> =atan2| (d,-a,sin0, ), z(a,sin0,-d, )- (15)
(a,+a,cos8, }(xcos 6, -ysing, )

] (16)

3

0,=0

2 237

Layer 1

Layer 4

Layer 2 Layer 3 Xy

Layer 5

Fig. 3: ANFIS structure

0, = atanZ(,frf2 +r222 ,rzj) (a7

8, —atang(rﬂ —fm} (18)

. > .
sin®,  sin o,

0 _mz( ] 19)

sin®, “sino;
The ANFIS algorithm: This study, explams the adaptive
newro-fuzzy inference system algorithm detail. ANFIS is
an integration of the ANN and the fuzzy logic. Tt is a
supervised learming algorithm has five layers shown in
Fig. 3. The second, third and fifth layers have fixed nodes
and the adaptive nodes are in the first and fowrth layers
only. The fuzzy inference system is a sugeno type in
which the membership function parameters are calculated
based on backpropagation gradient descent techmique.
The sugeno type of the fuzzy system rules are of the
form:

» Ifxis A andyis B, then f, = ¢, ;xtc y+c,
o  TIfxis A,andyis By, then f, = ¢, x+c¢,,ytcy,

where, A, A,, B, and B, are the fuzzy sets, ¢,,, ¢, ¢, €215
¢,, and c¢; are the designed parameters which are
calculated during the training process. The ANFIS layers
output calculations are:

Layer 1: The node function is the membership grade of
the fuzzy set:
O} =PpA;(x).fori =1,2

Or:

O, =BB_,(y).fori =3,4
Where:
1 = The node number

B = The membership function
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Layer 2: The node output is the firing strength of the rule:

o w, Al(x) B, (y), fori 1,2
Layer 3: The node output 15 the ith rule’s firing strength
divided by the rule’s firing strengths summation which is

called normalized firing strengths:

Layer 4: The node function is:
O:‘ = Efl = “Tl(CﬂXJrClZy + C1D )

Layer 5: The node output is the overall network output;
1t 15 the summation of all the signals:

Ziwifl
11
Ziw1

RESULTS AND DISCUSSION

; E
1
1

Simulations: The ANFIS scheme given in Fig. 3 was
umnplemented in MATLAB for the robotic manipulators
modelling purpose. In order to validate our proposed
technique, two different manipulators were trained and
tested in for imverse kinematics modelling. One ANFIS
was designed for each manipulator joint, it consists of
three membership functions in the input layer and 27 rules
m the next layer. Each network was trained for 100 epochs
with 400 sample mput-output data and then it was tested
on 100 sample mput data.

The simulation results of modelling the first
manipulator -3-DOF RRR arm- were illustrated in Fig. 4-7.
The training errors of the three joint angles are shown in
Fig. 4 while the tested joint angles 0,-0, are illustrated in
Fig. 5-7, respectively. Figure 8-14 show the simulation
results of training and testing the second robotic
manipulator -6-DOF robotic arm. The parameters were
chosen to be 1y, = 1; =15, = 1y, = 133 = 1 and r,;. Figure 8
describes the tramning RMSE of the six jomnt parameters
and the remaining figures show the tested joint and
end-effector angles compared with that of the actual
ones.

Figure 1-8 shows the neuro-fuzzy technique can
tramed the data of the robotic arm inverse kinematic
parameters with very small RMS error with an acceptable

102
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Fig. 4: RMSE of the three joint angles in first arm
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Fig. 5: 6, ANFIS test output in first arm
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Fig. 6: 6, ANFIS test output in first arm

number of epochs 100. The testing figure show that, the
ANFIS networks of the manipulator joints can fit the
actual ones with an acceptable error when they were
compared.
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Fig. 7: 6, ANFIS test output in first arm Fig. 10: 6, ANFIS test in second arm
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Fig. 9: 6, ANFIS test output in second arm Fig. 12: 6, ANFIS test in second arm
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Fig. 13: 6; ANFIS test in second arm
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Fig. 14: 6, ANFIS test in second arm
CONCLUSION

In order to find the reliable and precise solution for
mverse kinematics, this study proposed a new hybrid
technique based on an artificial intelligence. In this
technique an Artificial Neural Network (ANN) was
combined with fuzzy logic system and resulted in a new
technique denoted as (ANFIS). The performance of
ANFIS 1s evaluated based on the simulation to identify
the joints of 3 and 6-DOF robots. The experimental results
have showed the effectiveness of the ANFIS in solving
the problem of the industrial mampulators inverse
kinematics solution as it achieved the precise control and
decrease the computing time.
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