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Vibrational Frequency of Isotropic Square Plate on C-C-5S-S Condition
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Abstract: Tn this study, researchers discuss the frequency modes (first two modes) of non-homogeneous

1sotropic square plate on C-C-S-5 condition where C and S represent clamed and simply supported,
respectively. Here, thickness vanes linearly in one direction. For non homogneity in the material, we considered
circular varation in density. Bi-parabolic temperature variation on the plate is also being viewed To find the
vibrational frequency, Rayleigh Ritz technicue has been applied for the different values of plate’s parameters.
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INTRODUCTION

Liessa (1997a) provided an excellent monograph in
which he studied plate vibration on different boundary
(clamped, simply supported and free) conditions. Leissa
(1997b) also provided recent research in plate vibration.
Leissa and Nartia (1980) discussed natural frequency of
simply supported circular plate. Kalita and Haldar (2015)
applied FSDT to study the vibration of thick rectangular
plate. Kim and Dickinson (1990) discussed flexural
vibration of thin isotropic and polar orthotropic annular
and circular plate. Ansari and Gupta (1999) studied
asymmetric free vibration of polar orthotropic circular
plate with parabolic variation using Ritz Method. Zhou
(2002) of point supported
rectangular plates with variable thickness using a set of
static tapered beam functions. Sharma et al. (2016a)

discussed vibrations

provided mathematical modeling on  vibrational
frequency of skew plate with thermal gradient.
Sharma et al. (2016b-d) provided the free vibration of
non-homogeneous trapezoidal plate and orthotropic
rectangular plate under thermal gradient. Hosseini-
Hashemi et al. (2013) provided a mathematical model to
study free vibration of stepped circular and annular FG
plate. Khanna and Kaur (2016) discussed the effect of
structural parameter on vibration of non-homogeneous
rectangular plate. Ansari (2016) studied axisymmetire
forced response of polar orthotropic tapered circular
using Rayleigh Ritz Method.

The present study provides the frequency
modes of non-homogeneous tapered square plate on
C-C-S-S condition at different value of thermal gradient,
non-homogeneity and tapering constant. All  the

calculations are carried out for Duralumin material using
high level computational software MAPLE. All the
findings are presented with the help of tables.

MATERIALS AND METHODS

Equation of motion: Equation 1 of motion for isotropic
plate is:
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where, D, = Yh'/12 (1-v") called flexural rigidity. A comma

followed by suffix is known as partial derivative with

respect to independent variable. For non-homogeneity,
we assume that the density varies circularly m one

direction as:
2
p=p, {l—otl (1—‘/1-)(2]} (2)
a

where, o, (0O<c,<1) 15 known as non-homogeneity
constant. Thickness of plate is assumed to be linear in
one direction:

h =h, {HBE] 3)
a

where, B (0<P<1) is known as tapering parameter of the
plate and h = h; at x = 0. Also, the temperature variation
on the plate 1s assumed to be parabolic:
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where, T and T, are known as temperature above the
mention temperature at any point on the plate and at
origin, 1.¢., x =y = 0. For engmeering material, the modulus
of elasticity 1s:

Y =Y, (1) (3)

where, y; is the Young’s modulus at t = 0 and y is known
as slope of variation. Substitute Hq. 4 and 5, we get:

Y=Y, {l-o{l—x—j] {1y—jﬂ (6)
a a

where, o (0<<1) 18 known as temperature gradient which
15 the product of variation of slope and temperature at
origin, 1.e., ¢ = YT, Using Eq. 3 and 6 the flexural rigidity
of the plate becomes:
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Solution for differential equation: We are using Rayleigh
Ritz technicue (i.e., maximum kinetic energy T must equal
to maximum strain energy V) to solve differential equation,
therefore, we have:

8{V-T)=0 (8)
Where:
T= lczjjphqaz dydx )
2 oo
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In the present scenario, we are computing frequency
modes on C-C-53-S condition. The boundary condition for
C-C-8-8 is:

(ID:(DX:O,x:O,aand(D:(Dyyzo,y:O,a (1)

Therefore, two term deflection function ® which
satisfy above boundary condition could be:
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where, H, and H, represents arbitrary constants. Now
converting X and Y in non-dimensional variable as:

x=2v=< (13)
a a

Using Eq. 13, 9 and 10 becomes:
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Substitute Eq. 14 and 15 in Eq. &, we get:
(V*-}&T*):o (16)
Where:
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and A’ is known as frequency parameter. Equation 16
consists of two unknowns constants, i.e., H,, H, because
of substitution of deflection function ®. These constants
can be determined by:

a(v* -}&T*)
9H

1

—0.i=172 (17)

> 3

After simplifying Eq. 17, we get

aH, +a,H,=0,i=12 (18)
where, a,, a, (i = 1, 2) involve parametric constant and
frequency parameter. To get frequency modes, the

determinant of the coefficient matrix obtain from Eq. 18
must be zero. Therefore:

=0 (19)

Equation 19 1s quadratic equation from which we get
two roots as A, (1st mode) and A, (2nd mode).
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RESULTS AND DISCUSSION

To calculate the modes of frequency on different
values of plate’s parameter (i.e., thermal gradient,
non-homogeneity and taper constant), the following
parameters are used:

p, = 2.80x10° kg/m®, v =0.345, h, =0.01 m

Table 1 oprovides the wvibrational frequency
corresponding to thermal gradient for the following three

Casecs:

o Casel,o,=p=0
o Case2,q =p=04
o Case3,x,=p=08

From Table 1, we conclude that frequency mode
decreases when the temperature on the plate increases
from 0-0.8 for all the above said three cases. When
combined value of non-homogeneity constant 1 and
tapering perameter increases from 0-0.8 frequency
mode increases. Table 2 gives the frequency modes
thickness

corresponding  to parameter  for the

following:

e Caseda=qa,=0
¢ Cased a=c,=04
+ Case 6,0 =a, =08

From Table 2, we conclude that frequency mode
increases along with the thickness parameter for all the
three cases. When the combined value of temperature and
non-homogeneity «, increases from 0-0.8 as in case 4 to
case 6 the frequency mode decreases:

o Case7,x=p=0
o CaseB a=p=04
e Case9,0=p=03%8

Table 3 gives the frequency modes corresponding to
non-homogeneity constant for the following cases. From
Table 3, one can easily get that frequency decreases when
non-homogeneity increases from 0-1 for all the three
cases. On the other hand when the combmed value of
temperature gradient ¢ and tapering parameter [ increases
from 0-0.8 the frequency mode increases. The rate of
decrement 1s much smaller because of circular variation in

density.

Table 1: Temperature (rx) variations vs. vibrational frequency (1)

w=p=0 o =p=04 oy =p=08
o Ay As Ay Ag A Az
0.0 30.18 172.99 36.59 215.22 42,78 254.96
0.2 29.24 171.22 35.54 213.26 41.63 252.79
0.4 2826 169.44 34.46 211.28 40.43 250.60
0.6 27.24 167.64 33.33 209.28 39.19 248.39
0.8 26,17 165.82 3216 207.26 37.91 246.16
Table 2: Tapering parameter (3) vs. vibrational frequency (1)

=0 =00 ax=u =04 =0 =08
[3 }\'1 }LZ ;)Ll }\-2 1')\.1 ;)LZ
0.0 30.18 172.99 27.04 159.48 24.05 147.90
0.2 34.18 200.63 30.70 185.07 27.41 171.79
0.4 3829 228.96 34.46 211.28 30.86 196.24
0.6 42,47 257.75 38.29 237.90 34.36 221.07
0.8 46,72 286.87 42,17 264.82 37.91 246.16
1.0 51.00 316.23 46.08 291.96 41.49 271.45
Table 3: Nonhomogeneity (¢c1) vs. vibrational firequency (A}

B=a=0 f=a=04 f=x=08
o Ay Aq Ay Ag Ay Aq
0.0 30.18 172.99 36.05 224.79 41.38 277.07
0.2 29.50 167.67 35.23 217.70 40.42 268.19
0.4 28.87 162.84 34.46 211.28 39.53 260.16
0.6 28.28 158.43 33.74 205.43 38.70 252.85
0.8 27.72 154.38 33.06 200.06 37.91 246.16
1.0 27.19 150.64 3242 195.12 37.17 240.00

CONCLUSION
The present study shows the how circular

variation 1n non-homogeneity affects on frequency
of tapered square plate on C-C-3-S conditions. When
non-homogeneity  increases, the frequency mode
decreases with less rate of decrement due to circular
variation in density. The other parameter (temperature and
thickness) also affects the vibrational frequency. When
thickness parameter increases, the frequency mode also
increases. The frequency decreases when temperature on
the plate mcreases. The present research also provides
some numerical data in the form of modes which is very
useful for researchers/scientists to understand the

behavior of frequency.
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