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Calculation of Shock Wave Structures in Real Gas
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Abstract: The study considers the problem of calculating the shock-wave structures in calorically imperfect
gas. An overview of calorically and thermally imperfect gas is provided. The dependence of adiabatic index on
temperature for a diatomic gas 1s given. A comparison of this dependence with the linear approximation 1s
performed. The concept of the effective adiabatic index at which the dynamic compatibility conditions have the
same form as in the ideal gas 1s introduced. An algorithm for calculating the shock parameters using the
effective adiabatic index 1s considered. The shock polars and shock reflections from the wall are calculated.

Key words: Adiabatic index, calorically imperfect gas, configuration, formation, mach number, pressure, shocl,

shock-wave structure, temperature

INTRODUCTION

The goal is to examine the calculation methodology
of the shock-wave structures in calorically imperfect gas.
The gas may be considered 1deal in certain circumstances,
Le., non-viscous and non-conducting but must be
imperfect. The gas is called imperfect when it does not
satisfy the Mendeleev-Clapeyron equation of perfect gas
state. For example, outside of shock wave and of
boundary layer the mfluence of viscosity and heat
conduction can be disregarded. But if the pressure or
temperature is very high, the properties of the gas are
substantially different from the properties of a perfect
gas.

If the equation of gas dynamics includes the
adiabatic ndex v, then this 1s the equation of 1deal, perfect
gas. If the equation does not contain v, it 13 suitable for
any kind of gas. In a perfect gas v 1s constant and 18 equal
to:

G
y=F (1)
CV
Where:
¢, = Heat capacity at constant pressure

¢, = Heat capacity at constant volume

Using the expression for the enthalpy (heat content is
the energy that 1s available for conversion mto heat at
constant pressure), H = ¢,T as well as for the internal
energy, U= ¢,T, adiabatic index can be represented as the
ratio of enthalpy to mternal energy, v = H/U. Specific
heat ¢, can be easily determined experimentally, ¢, is

usually calculated by the formula which follows from the
equation of perfect gas state ¢, = ¢, T-nR where n 1s
number of substances in moles, R-universal gas constant,
T-Temperature. In terms of the molecular-kinetic theory
adiabatic index depends on the number of molecule’s
freedom degrees:

y=12 @

i

It 1s assumed that the atoms i the molecule are linked
tightly. In the one-atomic gas three are freedom degrees,
corresponding to the three coordimates, then v = 5/3=1.67.
In diatomic gas two more freedom degrees are added
which are associated with the molecule’s rotation around
two axes, ¥ = 7/5=1.4 in triatomic gas, one more rotational
freedom degree 1s added, y = 8/6=1.33. Adiabatic index for
the following important gas
emphasized:

mixtures are often

¢+ v =1.1: mixture of hydrocarbon fuel and air
¢+ v =1.2: mixture of a hydrocarbon fuel with oxygen
» v =1.25: combustion product of hydrocarbon fuels

In the 21st century, the works on creation of the
aircraft with jet engine of a new type, designed for high
speed flight (M = 3.5-8) were began. Particular difficulties
are posed by various non-stationary phenomena such
as hysteresis, arising during the restructuration of
shock-wave structure, low-frequency oscillations at the
nasal (Zapryagaev and Kavun, 2007; 2008a, b) and at the
bottom parts (Prodan, 2014; Bulat ef al., 201 2; Bulat and
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Prodan, 2013) of aircraft, simulation of non-stationary
shock-wave processes in  engines
rotational and impulsive motion of shock waves. Since,
the simulation of non-stationary turbulent flows with
shock waves faces certain difficulties (Bulat and Bulat,
2013), the calculation is often carried out within the model
of perfect gas. So, m research by Mitrofanov and
Zhdan (2004), the cycle of the pulse-detonation engine’s
operation within the ideal gas model 15 numerically
studied. By Adelman and Menees (1990) and Cho ef al.
(1998), it 15 shown that the known engine schemes with
the formation of stationary detonation waves in air mtakes
are functional at Mach numbers of flight around 5-7. At
the same time, it is known (Atafar et al., 2013) that if there
is a shock wave in the air (T = 280°C) with an intensity
T =10 (which corresponds to a normal shock in the stream
with M = 3), then ignoring the dependence of ¥ on the
temperature leads to =8% error in calculation if gas
temperature behind the shock. Therefore, constructing
numerical methods it 1s relevant to account for deviations
from the perfect gas model (Rydalevskaya et al,
2014). In the monograph by Ben-Dor (2007), the analysis
of the problem of oblique shock reflection from the wall
with formation of regular two-wave configuration or
three-wave Mach configuration is performed. During the
analysis it is concluded that disregard of gas caloric
imperfections is one of the main factor that causes the
discrepancy of calculation results by the scheme of ideal
perfect gas with the experiment. Tt is that task that was
selected in present research as a demonstration.

associated with

MATERIALS AND METHODS

Mathematical model of a shock in the perfect gas

Two types of deviation from the ideal gas law: There are
two types of deviations from the ideal gas law. Gas can
accurately follow the equation of state for a perfect gas,
but the specific heat capacities may not be permanent In
this case, the gas called is thermally perfect but calorically
imperfect. The gas can also have constant specific heats
capacities but does not satisfy the equation of state
perfect gas in such cases, the gas is called calorically
perfect but thermally imperfect.

Specific heat capacity c, mcreases at very high
temperatures because vibrational freedom degrees of the
molecules get exited. Thus, the adiabatic index will depend
on the temperature and the gas will be calorically
umperfect.

At normal temperature such phenomena do not
occur. On the other hand when the gas density is high, so
that, the average distance between molecules becomes
small there is a considerable their interaction between

them. Consequently, the equation of gas state may not
coincide with the equation of state for perfect gas and
thus, the gas would be calorically perfect and thermally
imperfect.

Thus, 1t 18 necessary to distinguish two types of gas
imperfections: caloric one, defined by excitation of
different energy levels in the gas molecules and thermal
one, defined by interaction between molecules. Adiabatic
index can be calculated by experimentally determining the
sonic speed in the gas environment:

TRT (3)
L

where, p = Molar mass. Let us, consider how the
expression for sonic speed will look in a perfect gas. Tt is
possible to divide the caloric and thermal imperfections of
gas when examining it at zero pressure. Let’s mark the
internal energy at zero pressure as e, then e 1s a function
only of the temperature T. According to the second law of
thermodynarmics:

e(T,Uu)—I:r{T(;E;J —p}duﬁeD(T) (h
Where:

v, = 1/p is specific volume of gas
p = Density
p = Pressure

For a perfect gas, the mntegral in Eq. 4 becomes zero
and therefore, the mternal energy and enthalpy does not
depend on the pressure. The somc speed can be
calculated as follows:

32:@ :_Uidi = ! dp ) [ dT +ai
dv ) dv, | dT ), | dv, | | dv, |

(5)
From Eq. 4 differential equation for the derivative,
included in Eq. 5 can be obtained:

[ %P
dry Lol ), (6)
do, | dey

dT

The index s in Eq 4 and 5 means that the
corresponding value is calculated for the isentropic
process. Substituting Eq. 6 into Eq. 5, we obtain the final
expression for the square of sonic speed:
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2
o)
al=n,| 9P (N
dep v, )
dT

In the case of a perfect gas, the Eq. 7 1s simplified to
the Eq. 3 and somc speed depends only on the
temperature.

The dependence of heat capacity and of adiabatic index on
the temperature: The gas imperfections are usually
taken into account by adding various empirical
constants and dependencies into the state equation of
Mandeleev-Clapeyron. The most famous of these
equations is the Vander Waals (Eq. 8):

p_ PRT (8)
1-bp

in which the empirical constant a takes into account the
mutual attraction of the molecules and constant b takes
mto account the fact that the molecules occupy certain
non-zero volume. Berthelot (1899) upgraded this equation
for very high temperatures ( Tahmassebpour, 2016):
p PRT ap® ©)
1-bp T

Equation 9 allows obtaming an expression for the
specific heat capacity at constant volume:

[a_UJ e, (10)
ar |

At which the thermal and caloric effects of gas
umperfections are separated. For this, let’s differentiate the
equation by Joule-Thomson by temperature and obtam:

O(UY_9 ({98 _p (11)
dTl gu | 9T JT )
Changing the order of derivatives m Eq. 11, taking
mnto account (Eq. 10), we can obtan the expression:

IR
o o Lart |

Integrating it with regard to Eq. 9, we finally obtain:

_2p (13)

A Tz

The first member of Eq. 13 determines the
dependence of the specific heat capacity on the density
at high pressures, ¢’ is the empirical constant that
determines the strength of molecules interaction.

The second member of Eq. 13 is a constant that
does not depend on the density but may depend on
the temperature. From a physical point of view, the
appearance of this constant indicates that the gas atoms
1n polyatomic molecules can oscillate and this will provide
a further contribution to the internal energy level.

At normal temperatures, this effect can be ignored.
For temperatures significantly different from the average,
considering the atoms vibrations to be harmonic and gas
to be diatomic, we can write (Eq. 14):

6y e%
c-%1+m%;}———7 a4
-7
Where:
C, = Specific heat capacity at constant pressure in ideal
gas

6 = Energy constant equal 3056.4 K

To obtain heat capacity at constant pressure the
expression, commecting two heats capacities 1s used:

oo\, as)

L .

Given that in an ideal gas C, = C,-R, we obtain:

2-bp o
+
o ey & 2p|. 1 tp RT
P 23 ’Yl T (1_e%)2 RT2 1 72q:)
(17bp)2 RT
(16)

Dividing Eq. 16 by Eq. 15 for the case of moderate
pressure when the coefficients b and ¢ can be considered
values of second order, we obtain an expression for the
dependence of the adiabat on the temperature:

1 -1 oY T
Ty=14+—1 - || 2] = (17)
7 +1+(yi—1) [T} (1,eeﬁ)2
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For each type of gases, Eq. 17 has a limit at T—e. For
mstance with yi= 1.4, y (T) tends to 1.286.

Relations for calorically perfect gas at the shock: An
obvious question arises whether it 1s possible to use the
known dynamic compatibility conditions on the shock,
derived from the conservation laws for perfect gas, to
calculate the interference of shocks in an imperfect gas.
The time required for the establishment of thermodynamic
equilibrium in the gas behind the wave can be estimated
by analyzing the speeds of chemical reactions. In those
cases when the width of the relaxation layer is considered
to be very small compared to the characteristic linear scale
of the flow area, this layer together with the previous
shock wave can be replaced by a single discontinmuty.

In this model, the gas n front of the shock 13 mn a
“frozen” state and behind the shock m the equlibrium
state. In the vicimty of discontinuity mterference point,
due to short residence time of the gas particles between
incoming and outgoing brealks, the physical and chemical
transformation behind the incoming breaks may be
ignored and calculate the flow in this area may be
performed according to the formulanfts of a perfect gas.
Outside a close vicinity of interference point the flow is
considered equilibrium and the parameters behind the
shock are measured by the ratios:

pu, = pu,, puf]-&;f: = PP, U, = B, 1702 /2 :f+1,):2:/2
(18)
which connect the parameters at the shock front. In the
Eq. 18 and further the “1id” indicates the parameters
behind the shock. This allows us to write the energy
equation (equation of shock adiabatic) i the form:

{ i P 1+ ELE - (19)
2p

o |

In a perfect gas the adiabatic mdex and molecular
welght are constant, the values of p, p, T are commected
by the state equation Mendeleev-Clapeyron and enthalpy
(i) is directly proportional to temperature, i.e.:

T (20)
v-1p  v-1

Equation 19 taking into account the caloric Eq. 20,
hence, follows Rankine-Hugoniot equation of shock
adiabat:

E = (1te])/() te),6 = 1) (21)
v+1

In the ideal, calorically imperfect gas the adiabatic
index depends on the temperature but the caloric (Eq. 19)
remams valid which allows to write 1t in quasi-perfect
form:

LA L (22)

j=—1" P :
v.-lp” f-1p

In Eq. 22, the alternating adiabatic index is labeled, to
distinguish 1t from the constant adiabatic mdex of 1deal

perfect gas. Then, the equation of the shock adiabat will
take the form:

+€, +e,
1+¢€ JE—l €

£, £,

=(I-1)(1+E) (23)

It 1s possible to mtroduce the concept of effective
adiabatic exponent vy,, lying in the interval:

Ve S v ve] 24)

The equation of the shock adiabat (Eq. 23) can be
written in quasi-perfect form:

E=(1+eJ)/(J+¢&,) (25)

Comparing Eq. 25 with Eq. 23, we obtain the
expression for the effective adiabatic index v,

e e =1-(e. -8 )(1+2./T)i(I-t.0)8, (26)

Additionally, we can introduce the effective Mach
number such that:

(27)

Effective and local Mach number are connected by
obvious relation:

,YMZ — YEME (28)

Substituting v, and M, in the dynamic compatibility
conditions on the shock:

P

D, =1-——(I1-1)(1+E) (29
pu
sinZG:%iz (30)
“Epv
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E s
th—tgG{l+ ﬁ(ln“[g 0)} (31)

which follow from the conservation laws (Eq. 18), it is
easy to verify that they have exactly the same form as
those for a perfect gas. Therefore, the basic equations of
oblique shock can be written in the form siumilar to the
case of ideal perfect gas:

T={(1+e, )MIsin’ ¢, (32)
M:—(1-E (1) ]
1\715{ c—(1-E ) )} (33)
E.J

Thus, to calculate the shocks mterference the
well-known dynamic compatibility conditions (Eq. 29-31)
and the basic relations for oblique shock (Eq. 32 and
33) obtained for the perfect gas can be used. Adiabatic
index in this case is considered to be variable. In the case
of calorically imperfect but thermally perfect gas, the
adiabatic index is calculated using the relations (Eq. 17).
If the gas is thermally imperfect as well the adiabatic index
15 determined from state equation for thermally mmperfect
gas.

RESULTS AND DISCUSSION

The influence of calorically imperfect gas on the shape of
shock polar: Shock polar or shock isomach is the
dependence of shock J intensity on the angle of flow
rotation at the shock P, plotted for a given mach
number before the shock. The problems of gas-dynamic
discontinuities interference can often be conveniently
solved by examining the intersection of shock polars, so,
1t 18 mmportant to know how the shape of the polar will
change with changing of temperature if the gas is
calorically imperfect.

Tt shows the shock polar for Mach numbers M = 2.5
and M = 3.5, plotted at different temperatures before
the shock. It 1s shock
intensity faintly depends on the temperature but the

seen that the maximum

critical flow rotation angle of the shock 13 quite
substantial.

Since, in the problem of studying the transition from
regular to irregular reflection the key role is played
by wvon Neumann separation criterion (when the
shock polar touches the vertical axis), we can expect
that the caloric imperfection of gas and as a result,

the dependence of shock’s limiting rotation angle on the
temperature will significantly affect the moment of such
transfer.

It shows the dependence of the limiting rotation
angle at the shock at different temperatures and mach
numbers before the shock. the black curve corresponds to
T =300 K, blue-T = 500 K, red-T = 1500 K.

It 15 seen that with mcrease of M the curves
corresponding to T = 500 and 1500 K close together,
tending towards asymptotical curve. Therefore, starting
with M = 3 the asymptotic value of adiabatic index
v = 1.286 may be used for the flow behind the shock
which eliminates the need to calculate it by iterations.

Regular and mach reflection of shock wave from the wall
in calorically imperfect gas: Tt shows a diagram of the
regular (left) and irregular (right) oblique shock reflection
from a solid wall.

Below are the results of calculation reflected shock’s
intensity A, = InJ, depending on the intensity of incident
shock A, = InJ,. Two cases are considered: the rregular
and regular reflection. Von Neumann criterion is used as
a criterion for transition from regular to wrregular reflection.
This transition is accompanied by an abrupt change in the
intensity of reflected shock. Tt is noticeable that the
calorific gas mperfection affects both the moment of
transition to irregular reflection and the value of abrupt
change of reflected shock’s intensity. The inset of shows
the intensity of the main shock at the triple point T the
intensity of mach stem. It can be seen that the highest
difference is observed when the temperature before the
first shock is within range of T = 300-1000 K, then it
gradually decreases.

Shock intensity at different temperatures differs
slightly but during the transition from regular to uregular
reflection quite significantly.

From approximately 1000 K the offset of transition
moment becomes less noticeable, therefore in this
temperature range the asymptotic value of the adiabatic
index can be used for calculation.

CONCLUSION

The influence of gas imperfections on the properties
of the shock-wave structures has been examined. [t has
been shown that it is necessary to distinguish between
caloric imperfection when the adiabatic index depends on
temperature and thermal imperfection when high pressure
causes the equation of ideal gas state to ceases to be
satisfied. Formula for dynamic compatibility conditions on

8820



J. Eng. Applied Sci., 12 (Special Issue 10): 8825-8831, 2017

the shoclk derived for the perfect gas can also be used to
calculate the calorically imperfect gas but taking into
account the dependence of the adiabat on temperature.
The above method of calculating the calorically perfect
gas has demonstrated that with increasing temperature
the value of the adiabatic index tends to its asymptotical
which should be taken equal to the asymptotic value.
Shock polars built for calorically perfect gas demonstrate
the fact that the maximum intensity of the shock
relatively weakly dependent on temperature. On the other
hand, the effect of temperature on the value of limiting
flow rotation angle is quite noticeable. This should be
taken into account in the calculation of oblique shock
reflection from the wall and of the interaction of colliding
shocks. The most sigmficantly the change of temperature
affects the moment of transition from regular shock’s
reflection from wall to uregular one. Results were
compared with numerical simulation performed on GPU
with the use of advanced analysis methods (Gaidhane and
Hote, 2016; Siwvasuthan et af., 2015, Rahmam et af., 2011,
Kunchur et af, 2013, 2015, Raad et ol, 2016). It
should be noted that even at a mach number of the
original flow M = 3 and at normal temperature,
calorific gas 1imperfection adds significant errors to
the calculations and it should be mandatorily
considered.
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