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Abstract: In this study, the idea of unitary operator of Pauli matrices is employed in a new algorithm. One of
the most attractive properties of tlus algorithm 1s that, we can decide when to change the operations of the
algorithm whenever 1t 1s statistically necessary. The underlying operations in this algorthm are unitary
operators of Pauli matrices which can be represented by using rotation matrices. The researcher divided the
combination of the Pauli matrices into three groups where we perform the operation (I, o,, ¢, and 0,) in each
group. Using developed encryption algorithm could encrypt the message, being transmitted over an insecure
channel. The keys are created using a BB&4 protocol where we require two keys K K, to encrypt a qubit and
this is important in order to hide all information in all possible bases the qubit could be in. The security analysis
and an example illustrating how the algorithm works are presented in this study. An overview of the complete
process from the generation of the algonthm to the decryption of the message 1s illustrated explicitly.
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INTRODUCTION

Cryptography or cryptology is a science to
constructing and analyzing protocols that prevent
eavesdropper from interpretation private messages. An
algorithm called a cryptosystem or cipher works with the
key to achieve this goal.

Classical cryptosystem can be generally divided into
two types depending on the key. Where the sender
and the receiver use the same key called symmetrical
cipher for instance the Vernam algorithm (one time pad)
(Schneier, 2007). When the sender and receiver use
different key called asymmetric cipher. In this case, the
security 1s based on complex computational for instance
RSA algorithm (Rivest ez al, 1978).

Quantum cryptography is a science comes from the
birth of the 1dea of quantum computation, it was clear that
the nature of quantum measurement plays an inportant
role in the secure transmission of information. So, it 1s
obvious that one of the first significant contributions to
quantum cryptography would be a way to prevent
eavesdropping. The BB84 protocol proposed by
Charles and Brassard (1984) allows secure quantum key
distribution over an
experimentally demonstrated i 1992 (Bemnett et al,
1992).

There are many aspects of quantum cryptography
proposed related to information security. We would like
to refer to the quantum encryption algorithm proposed by

insecure channel and its

Zhou et al. (2006) where a classical plaintext message is
encrypted using a quantum computational algorithm
employing 6 quantum keys divided inte 4 groups. The
output is a quantum ciphertext composed of 3 qubits. So,
1n this algorithm a classical bit 1s encrypted mto 3 qubits.
Moreover, we would like to refer to the algorithms
(Run and Hua, 2005; Zeng, 2004; Cao and Liw, 2010;
Abdullah et al, 2016a). All of them in common can
apply under certain circumstances self-inverse umitary
operations to a message to encrypt a message. Other
encryption algorithms like (Leung, 2002) are relying on
entanglement where the entangled key is sent over an
insecure quantum channel. A generalization by Leung
(2002) 1s proven by Boykin and Roychowdhury (2003).
Furthermore by Boykin and Roychowdhury (2003), a
classical binary bit are encrypted using keys in a
non-orthogonal quantum state which was extended by
Leung (2002) to a new quantum encryption algorithm.
Zhou et al (2007), proposed standard one-time pad
encryption algorithm for classical messages without a
pre-shared or stored key. Khalaf and Abdullah (2014)
proposed a novel quantum encryption algorithm that can
be used to encrypt classical messages based on quantum
shift register. Recently, Abdullah et al. (2015) presented
a new protocol where this protocol work relies on the
principle of the classical three-pass protocol and the
properties of quantum mechanism and this is open new
field to develop the quantum encryption algorithm
(Abdullah et al., 2015). In thus study, we used the same
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concepts adopted by Zhou et al (2006), Run and Hua
(2005), Khalaf and Abdullah (2014), Abdullah ez al. (2015,
2016b), Boykin and Roychowdhuy (2003) and
Ambamis et al. (2000) but we tend to utilize a novel
scheme.

The sender takes a qubit to perform an operation on
the qubit depending on the key. Then, the receiver applies
some other transformation depending on the key such as
ending up with the qubit. These operations represented
as a four distinct unitary operators of Pauli matrices are
generated using the property that every unitary operator
can be written as a product of unitary operators under
certain conditions.

Unitary operators: Unitary operators form the foundation
of the encryption algorithm is presented in this study.
Unitary operators can be written in the form:

U =R, (B)R,. (1R, (3) M

where, R;(£) = ¢ and g, being the Pauli matrices «, P, v
and & are real numbers. Or alternatively we can write every
unitary operator as:

U = e AxB xC, with ABC = I (2)

where A, B, C are unitary operators satisfying ABC =T1.If
we apply the unitary operator U to state I which means
quantum message state, this leads to obtamnthe state
Ul which has density operator U [J{y|U" (Kaye et al.,
2007).

MATERIALS AND METHODS

Pauli matrices: The Pauli matrices o0, o, and o,
correspond to rotations about the x, y and z-axes of the
Bloch sphere, respectively. The Pauli matrices are
considered very important to the quantum computing and
quantum cryptography because they span the vector
space formed by all 1-qubit operators. In particular, this
means that any l-qubit unitary operators can be
expressed as a linear combination of the Pauli gates.

For instance if we take the Pauli 0, gate as an example
where every 1-qubit pure state is represented as a pomt
on the surface of the Bloch sphere or equivalently as a
unit vector whose origin is fixed at the center of the Bloch
sphere. A 1-qubit quantum gate U transforms a quantum
state [} into ancther quantum state U [}, In terms of the
Bloch sphere, the action of U on i} can be thought of as
a rotation of the Bloch vector for i) to the Bloch vector
for T ). For example, the not gate takes the state |0} to

|o»

Fig. 1: Rotating the state |0} to the state |1} (Kaye et al.,
2007)

the state |1} (and takes |1} to [0}). In terms of the Bloch
sphere, this action can be visualized as a rotation through
an angle 1 about the x-axis as illustrated m Fig. 1.

In this study, we used these rotation gates which
correspond to rotations about the x, y and z-axes of the
Bloch sphere. They are defined in terms of the Pauli
matrices where defined as follows:

o ool s A @
01 10/ 7 o 0 <

Quantum block encryption algorithm based on Pauli
matrices: The idea of the algorithm 1s straightforward. As
for the encryption of each qubit, we need one Pauli
unitary operator, therefore, one out of four generated
distinct Pauli unitary operators is selected according to
the bit sequence of the measured quantum keys as
described below. Thus, we split the Pauli unitary operator
into three groups as follows:

The first group is (I, 0., 0, and o, 0,) the second
group 1s (I, 0_, 0, and 0., 0,) and the third group 1s (I, o,
o, and 0., 0,). The groups of the operators allows us to
change the algorithm whenever it is necessary where the
sender and receiver agree about only one group to
use it in the encryption algorithm where the encryption
algorithm 1s designed based on these operators.

Quantum encryption: The idea for the Quantum
Encryption Algorithm (QEA) is very obvious. We will use
the same principle as in the superdense coding presented
by Bennett and Wiesner (1992). Based on the combination
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Table 1: Comrespondence table for encryption

Table 2: Corespondence table for decryption

Ko. Ky Uy KK U,
0, 0) Uao 0,0) Upg?
(U] Uny 0, 1) Uy
(1,0 Ut (1,0) Uyt
a, 1 U a, 1 Uyt
QEA Sender it Al Receiver
¥ ¥
BB34
KK, >
Uxali
Fig. 3: Transmission of the quantum ciphertext and the
keys
Us,x, QDA
Uy, Uox,
U‘o‘l U:nxi
[y ———» ———» )
T T Usr,
K, K
Fig. 2: Quantum block of encryption algorithm Usge,
of the two measured key bits KK, we will select the
operation on ||}. As we have two key bits of T I
consideration, we can obtain four different combinations K, s

of these two bits. So, for each of the combination there
must be a umque Pauli unitary operator assigned, i.e.,
U,,#U; if y#iand p#j resulting in Table 1.

For instance let K, =0, K, =1, |y} = [1}. Then, we
compare the pair (K, K,) = (0, 1) with the bit pars in
Table 1, to assign the unitary operation Uy, to encrypt ).
Finally, we apply the following operation on |17}

‘W’> =Uy |‘|J> (4)

Resulting in the quantum ciphertext of the two key
bits as shown in Fig. 2.

Transmission: We transmit the two keys K; K, using a
quantum channel by BB84 protocol. After the sender and
the receiver agree about the group that they use it in the
quantum encryption algorithm in Fig. 3 and then the
output of the algorithm is a quantum ciphertext ¥ send
to the receiver over a quantum channel as shown
m Fig. 3.

Decryption: The idea for the Quantum Decryption
Algorithm (QDA) 1s the same of quantum encryption

Fig. 4: Quantum block of decryption algorithm

algorithm but with opposite direction. Where it 15 based
on the combination of the two key bits K, and K, that, we
recelved by secure quantum channel, we will select the
operation on ¥ As we have two bits of consideration,
we can have four different combinations of these two
bits. So, for each of the combination there must
be a unique inverse unitary operation assigned, i.e,
U, #U; ify=iand p#j resulting m Table 2.

At the end, we apply the quantum cipher text ¥} to
the inverse of the unitary to get the quantum state
message |-} as shown in Fig. 4.

RESULTS AND DISCUSSION

Security analysis and algorithm optimization: First ofall,
it is preferable to have a look on what a quantum
encryption algorithm scheme look like. Where the
sender’s goal is to send a qubit |-} to the receiver via.
quantum channel and the opponent trying to listen and
intercept the qubit |-}, The keys that are used by sender
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Table 3: Correspondence table for first group of Pauli operator

Table 4: Results table for quantum encryption

K. K Uy,

(0= 0) Up=1
©,1) Uy =X
(1= 0) Ug=2
a, b U, =X%X7

and recewver are distributed by BB84 protocol. As m the
output of the encryption algorithm ¥} sends by the
sender to the receiver. The opponent sees some state
going across. The receiver needs a decryption function as
the receiver apply some Pauli operators depending on the
key such as ending up with |-y} eventually. So, to
approve that our proposed algorithm is working perfectly,
we should realized two conditions: first, the sender
encrypt the qubits and the receiver can recover it. Second,
1t 18 secure which means that the state p that opponent
sees is independent of |-17}.

In order to fulfill the two conditions, we start to check
whether the proposed algorithm 1s correct or not mn other
words the sender can recover the qubit unlike the
opponent, the sender knows the key and hence he can
simply apply the inverse of the Pauli operator operation
that the sender performed. For the second condition, the
proposed algorithm 1s secure. In other words, the state p
that the opponent sees is independent of the message
qubit. So, by using the density matrix formalism, we
approved that the proposed algorithm 1s secure and the
encrypted qubit ¥ is completely independent of the
message qubit state [y}, If we use for instance the first
group of the Pauli operator’s (I, o,, 0, and 0., 0,) with two
bits of key K,, K, and quantum message state [r}, if the
key bits KK, = 00, we will apply. If, we utilize the K|
K, = 01, we will apply X to message state [iJy). Tf, we used
the KK, = 10, we apply Z to message state [). Finally, if
we adopt the K K, = 11, we will apply XZ to message state
[U} as shown in Table 3.

Now, if we average out all of these four cases we,
thus, see the density matrix p that the opponent see the
state averaged over the two key bits. Therefore, 1t 15 just
maximally mixed state (the identity) independent of the
message state [} (Kaye ef al., 2007).

By the same way, we can approve that with the
second and third group of Pauli operators, we see that the
encryption state is independent of the initial qubit, the
state that the opponent has 1s maximally mixed and the
opponent cannot gain any information about the
message state [}, So, the second condition approved as
well.

Analysis of proposed algorithm: In the following example,
we discuss how our algorithm works where the sender
and receiver agree about the group of the Pauli operator
which 18 for mstance second group (I o,, 0, and 0,, 0,)

K K U, by = Uy
(0, 0) Up =1 Li-=|-}
(0, 1) Uy =X X |-r=4-
(1,0 U,=2% Z|-h=1)
(1 U, =X7 XZ |-r=K
Table 5: Results of density matrix p

Uy, by =Up s o

Up =1 L|-y=|-; [-H-

U, =X X |-r=4-2 X-K-X
Uy=7 Z.|-r=]+y Z.-%-|Z

U, =XZ XZ. |-y =) XZ.-%-|.XZ,

The averagge 1 Zw vpu=L
Table 6: Results table for guantum decryption

Ko Ky 11, = IT;‘ !ITI
(0,0) Uy =1 |- I=|-
(0,1) Uy =X - X =1
(1,0 U,=2 [+2Z=]|-}
a.n U, =Xz [+2ZX=]|-}

and the message qubit I} = |-}, so, we encrypt the state
based on the two key bits K; K, by applying the Pauli
operator as in Table 4.

Now, if we compute the density matrix p which the
opponent sees and average all out all of these output of
encryption we get the maximally mixed state (the identity)
as m Table 5.

The receiver makes the quantum decryption process
where all the quantum encryption processes are inverted
to get the final quantum message state |} as shown in
Table 6.

Finally, we get the quantum message state and
proposed quantum encryption algorithm based on Pauli
operator.

CONCLUSION

The quantum technology is very important and being
improved continuously, especially in the field of quantum
cryptography. At the same tune, most of the world 1s
challenging the fact that science and technology is in
constant progress and sooner or later, the quantum
computers will take their part in this world. So, it 1s not
possible to treat or transfer all of the existing information
1n classical form which 1s more conventional to the people
1in quantum and pre-shared classical technology simce the
security cammot be guaranteed. Therefore, we present a
quantum encryption algorithm based on Pauli operator
in this study, we improved the quantum encryption
algorithm, entailing two key bits to encrypt one quantum
message state. The algorithm saves about half the time
without the loss of the security.

RECOMMENDATIONS

The security 1s further improved through using the
Pauli unitary operator where the sender and receiver agree
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about which Pauli operator group to be use before the
encryption process begins where one does not know the
key. The output is completely independent of the input
which means, we have managed to hide all possible
mformation from the opponent. This makes the algorithm
probabilistic rather than deterministic.
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