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Abstract: The Modified One-step M-estimator (MOM) is a highly efficient robust estimator for classifying
multivariate data. Generally, robust estimators came mto existence as a solution to the mability of classical
Linear Discriminant Analysis (LDA) to perform optimally in the presence of outliers. Thus, to solve this
shortcoming, the robust MOM estimator 1s integrated with a highly robust scale estimator, Q,, in the trimming
criterion of MOM. This introduces a new robust approach termed RLDA,, for handling cutliers encountered
in multivariate data. The results show the superiority of RLD A, over the classical LDA and previously existing
robust method in literature in terms of misclassification error evaluated through simulated data.
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INTRODUCTION

Discriminant analysis is a statistical classification
technique where the object groups and several training
examples of objects that have been grouped are known
and the model of classification 1s also given. Discriminant
analysis 18 one of the methods that give more information
to the structure of multivariate data which are data arising
from variables greater than one (Fidler and Leonardis,
2003; Cacoullos, 2014). Certain features of a discriminant
analysis platform mclude the choice of fitting methods
which births the commen discriminant analysis method;
Lmear Discrimmant Analysis (LDA).

LDA as introduced by Fisher (1936) is a very
imperative and archetypal technique in discriminant
analysis as it has good use in practical applications. LDA
performs well for data that follow normal distribution
with identical population covariance matrices but
shows instability when the assumptions are violated
(Omidiora et al., 2008; Croux et al., 2008). Discriminant
analysis has a high level of vulnerability to outliers which
is seen to be present in many real world multivariate data
sets (Sajtos and Mitev, 2007). This 1s likewise the case
when considering LDA which due to the constraint that
the LDA parameters are highly affected by outlying
observations gives room for misclassification of new
observations (Kim et al., 2006, Pires and Branco,
2010, Tin and An, 2011). These setbacks caused
researchers to venture into mtroduction of robust
estimators which will most importantly handle the
presence of outliers (Cheng et al., 2016).

A wide range of robust estimators exist and have
been adopted for handling the outliers in the data
that the conventional LDA approach cannot handle

(Filzmoser and Todorov, 2013; Todorov and Pires, 2007),
ranging from the M-estimators, Minimum Volume
Ellipsoid (MVE), Minimum Covariant Determinant (MCD)
and S-estimators as introduced by Campbell (1980),
Rousseeuw (1984, 1985) and Davies (1987), respectively.
The concept for robustifying LDA involves the
replacement of the classical mean vectors and covariance
matrices by its robust counterparts. This approach known
as the plug-in method has been adopted in various way to
introduce new robust linear discriminant analysis
methods (Sajobi ef al., 2012; Alrawashdeh ef al., 2012,
Todorov and Pires, 2007, Filzmoser ef al., 2006).

Some specific literature mncludes the researches of
Yahaya et al. (2016) and Lim et al. (2016) who introduced
an automatic trimmed mean vector and a winsorized
approach as a substitute for the classical mean vector. On
the other hand, a robust approach of multiplying the
Spearman’s tho with the corresponding robust scale
estimator was adopted by these researchers as a
substitute for the covariance matrices. Similarly, this
article will be adopting the plug-in method to introduce a
new robust linear discriminant analysis method. The
robust estimator adopted to replace the classical mean
vector 1s the Modified One-step M-estimator (MOM) by
Wilcox and Keselman (2003) ntegrated with a hghly
robust scale estimator Q,, in the trimming criteria. This new
robust estimator introduced in this study is coined
RLDA,.

MATERIALS AND METHODS
This study presents a brief description of the

conventional LDA algorithm and the new robust
approach RLDA,.
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LDA: Consider a two-group discrimination problem with
n observations of a training data measuwred at d
characteristics are givern. The n observations are obtained
from two different populations, m, and m, with
corresponding sample sizes, n, and n,. The classical
LDA rule as defined by Johnson and Wichern (2014)
1s given in Hq. 1

If: (-1, ) D ! {Xu'l(l-l-l _MZ)} > ln[sz
Z P (1)

thern: X EM,

otherwise: x,em,

Where:

P = The prior probability that an individual comes from
population T,

P: = The prior probability that an individual comes from
population T,

Note that the classification of the observation x, will
be optimal only if the assumption that ©; and 7, are both
multivariate normal distributions with different location
but having identical covariance is satisfied (Lim et al.,
2016). In addition, if there are outliers m the traming
data, then the estimators of mean and covariancecan
affected. Thus, this brings the
mtroduction of the new robust method as seen 1n the next

be serously
subsection.

RLDA,,,: This approach involves combining the MOM
statistic with the highly robust Q, scale estimator. MOM
as obtained from the conventional one-step M-estimator
(Haddad, 2013; Staudte and Sheather, 1990) but with
certain modifications 1s sumply the average of the
values remaining after the removal of all extreme
values (if there 15 existence of any). The robust Q, scale
other proposed by
Rousseeuw and Croux (1993) 15 a well suitable estimator
with the advantage of high efficiency. The algorithm to
combine these two techniques is described iteratively

estimator on the hand as

das:

LDA algorithm:
Step 1: Trim the data to be anatyzed using the default scale estimator MATD,

for determining the extreme walues in MOM criterions. Tet M be the
median for group j: !

MAD; _ .
MAD,; = ——L; MAD, =Median|¥; -1,
0.6745
|Y2j-Mj LAY

Step 2: Compite é from:

-y

2 Y(l)]

P |
%= aa

I
Step 3: Calculate Q, from Q, = 22219{ XX | i<j; 1, 2,3, .. m; =1, 2,
3, ... N}y

Step 4: Replace the default scale estimator MAD, in step 2 with the

Q, estimator to obtain i; as the number of observations Y; such that
v M) <-2.24(Q and i; iz the number of observations
b R " m

EY‘J-MJ%>-2.24%QN%

Step 5: Compute § based on the Q, estimator in step 4.
1

The next study will consider the implementation of
the new robust method with sinulated data. Comparison
1s made with the classical LDA and other robust approach
1n literature.

RESULTS AND DISCUSSION

The performance of the methods computed in terms
of misclassification error was investigated on several
simulation conditions involving manipulation of five
variables as shown in Table 1. The choice of variables to
be manipulated follows from prior adoption in previous
studies such as Haddad (2013) and Lim et al. (2016)
amongst others.

The combmation of various variable settings
produced 306 different data distributions (18
uncontaminated, 72 location contamination, 72 shape
contamination and 144  location and  shape
contamination). Each group m;, j = 1, 2 has a separate
mean |, but the same covariance matrix L. Therefore, the
data was contammated for the covariance matrices as
follows:

m o {1-e) N (}.LJ, L )+8Np (].LJ L, KIP)
m (o), (1, 4N, (il )

(2

A testing sample of size 2000 from each population
was generated and the misclassification error was
computed by obtaining the proportion of misclassified
testing sample observations in each population. The
simulation process was repeated 2000 times and the mean

Table 1: Simulation conditions

Variable Descriptions

Dimension of variable (d) 2,6

Percentage of contamination () 0,10, 20

Sarnple size of the training data (n;, ny) (20, 20), (50, 50),
(100, 100)

Shift in location of the population () 0,3,5

Shitt in shape of the population (k) 0,9 25
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Table 2: Mean misclassification error for linear discriminant models with

(my, ny) = (20, 20)

(ny, nz) = (50, 50)

(my, 1) = (100, 100)

Lim et . Lim et af. Lim et af.
£ u s LDA (2016) RLD AW, LDA (2016) RLDAw LDA (2016) RLDAw
- - - 0.2511 0.2543 0.2530 0.2442 0.2548 0.2449 02420 0.2429 0.2424
10 3 - 0.3389 0.2866 0.2867 0.29560 0.2646 0.2583 0.2741 0.2542 0.2496
10 5 - 0.4987 0.2862 02723 0.4986 0.2658 0.2519 0.5010 0.2566 0.2462
10 0 9 0.3178 0.2579 0.2549 0.2759 0.2472 0.2455 0.2587 0.2438 0.2427
10 0 23 0.4205 0.2579 02542 0.3863 0.2474 0.2452 0.3447 0.2439 0.2426
10 3 9 0.3884 0.2602 0.2556 0.3610 0.2487 0.2456 0.3270 0.2446 0.2428
10 3 23 0.4527 0.2587 0.2544 0.4441 0.2479 0.2453 0.4234 0.2441 0.2426
10 5 9 0.4548 0.2631 02570 0.4732 0.2502 0.2461 0.4804 0.2455 0.2430
10 5 28 0.4755 0.2593 02545 0.4870 0.2483 0.2452 0.4917 0.2444 0.2426
20 3 - 0.5770 0.4753 0.4745 0.6202 0.5297 0.4009 0.6542 0.5772 0.3480
20 5 - 0.6530 0.4442 0.3925 0.6911 0.5179 0.2998 0.7124 0.6010 0.2710
200 0 9 0.3624 0.2628 0.2608 0.3055 0.2499 0.2470 0.2745 0.2451 0.2433
20 0 28 0.4637 0.2622 0.2576 04277 0.2499 0.2461 0.3929 0.2454 0.2429
20 3 9 0.5083 0.2735 0.2624 0.5334 0.2561 0.2479 0.5678 0.2489 0.2437
20 3 25 0.5041 0.2652 0.2574 0.5062 0.2515 0.2463 0.5237 0.2461 0.2430
20 5 9 0.6039 0.2865 0.2662 0.6795 0.2665 0.2492 0.7158 0.2565 0.2445
20 5 23 0.5310 0.2678 0.2578 0.5590 0.2530 0.2465 0.6061 0.2469 0.2431
Table 3: Mean misclassification error for linear discriminant models with
(ny, ny) = (20, 20) (ny, ny) = (50, 50) (ny, ny) = (100, 100)
Lim et . Lim et . Lim et of.
e u  x LDA (2016) RLDA, LDA (2016) RLDAy. LDA {2016) RLDA,
- - - 0.1409 0.1481 0.1442 0.1214 0.1246 0.1226 0.1157 0.1173 0.1163
10 3 - 0.3915 0.2733 02728 0.3286 02123 0.1937 0.2740 0.1759 0.1574
10 5 - 0.4998 0.2758 0.2438 0.5004 0.2184 0.1697 0.4991 0.1855 0.1418
10 0 9 0.2108 0.1529 0.1484 01812 0.1276 0.1247 0.1505 0.1189 0.1172
10 0 25 0.2543 0.1535 0.1481 0.2695 0.1280 0.1246 0.2252 0.1192 01172
10 3 9 0.2679 0.1631 0.1541 0.2757 0.1338 0.1271 0.2414 0.1224 0.1184
10 3 25 0.2655 0.1557 0.1485 0.3288 0.1298 0.1250 0.3142 0.1201 0.1173
10 5 9 0.3253 0.1754 0.1625 0.3809 0.1412 0.1306 0.4000 0.1267 0.1202
10 5 23 0.2783 0.1581 0.1497 03812 0.1313 0.1255 0.4072 0.1210 0.1175
20 3 - 0.5365 0.4659 0.4698 0.5611 0.5070 0.4313 0.5866 0.5399 0.3913
20 5 - 0.5668 0.4435 0.4141 0.6101 0.4896 0.3300 0.6526 0.5439 0.2670
20 0 9 0.2514 0.1603 0.1567 0.1980 0.1321 0.1277 0.1587 0.1212 0.1185
20 0 248 0.3613 0.1607 0.1541 03534 0.1327 0.1270 0.2921 0.1218 0.1181
20 3 9 0.3933 0.1842 0.1693 0.4948 0.1507 0.1338 0.5381 0.1330 0.1214
20 3 25 0.4204 0.1657 0.1553 04977 0.1366 0.1277 0.5044 0.1242 0.1185
20 5 9 0.4956 0.2167 0.1882 0.6776 0.1805 0.1433 0.7669 0.1554 0.1265
20 5 25 0.4625 0.1711 0.1572 0.5911 0.1407 0.1287 0.6490 0.1266 0.1190
Bold values are significant
misclassification error was recorded as seen in Table 2 o CA
. 1004 O Lim et ai. (2016}

and 3. The performance percentage of each model, that 1s, o0 BRLDA,, — —
the model with the least misclassification error is also 80
displayed graphically in Fig. 1 and 2. 704

Congidering the percentage of contamination (g), g 60+
Table 1 states that the percentage will vary from 10-20%. g ig_
Tt is observed that as increases, the mean misclassification 304
error also mcreases at constant u and . This confirms 20+
that the presence of contamination in data makes it 12" — — —
difficult for linear models to correctly classify this data. (20, 20) ' (50, 50) ' (100, 100)
Although, the robust models perform considerably better Valuss
than the classical LDA with increased contamination.
Thus, considering the performance of each linear model, Fig. 1: Performance percentage chart for linear

Fig. 1 and 2 show the performance percentages. From
both Fig. 1 and 2 and Table 1-3, LDA obtains the least
mean misclassification error when the data is clean (no
contamination) with e = 0, u =0, k = 0. Although, as scon

discriminant models withd = 2

as there 1s contamination in the data, the better

performance shifted to the robust models. Comparison 1s
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o CA
100+ O Lim et af, (2016)
90 DRLDAW_ — ]
80+
704
m 60‘
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Fig. 2: Performance percentage chart for linear

discriminant models with d = 6

made between the robust model presented by Lim ef al.
(2016) and the new RLDA,,, Model. It is observed that for
both dimensions 2 and 6, RLDA,, has the highest
performance percentage giving more impressive results
that the results from Lim et al. (2016). Moving over to the
shift in location of the population, one notable behavior
as increased from 3-5 at is the decrease in the mean
misclassification error for the robust models. Whereas, for
the shift in shape of the population, the general behavior
for all the linear discriminant models is sharp reduction as
soon as goes from 0-9 before its gradual descent to
convergence.

Therefore, a general overview of the results obtained
in Table 1 and 2 show CA obtaining the least mean
misclassification error at no contamimation. This is in line
with the theory that the classical LDA approach will
perform optimally when the assumptions of the LDA are
fulfilled. Although, RLDA,,, and Lim et al. (2016) also
gave favourable results as the difference between the
mean misclassification error of the robust estimators and
the classical approach is very small which shows
convergence in results. However, as soon as there is
contammation in the data, the better models are the robust
models with RLDA,, performing better than (Lim ef al.,
2016).

In addition, it 1is also observed that the
muisclassification error 18 mversely proportional to the
dimension of the variables, that 1s as d mncreases, mean
misclassification error reduces, except when there is no
shift in shape of the population (x = 0). For instance,
when considering the increase from d=2to d =6, the
mean misclassification error reduces to about half of its
initial value. However, this pattern is not observed for the
classical model which did not display such convergence
with respect to the increase in the dimension of the
variables.

CONCLUSION

This study has presented a new robust approach
that is suitable for handling outliers in multivariate
data. The robust model considered the modified one-step
m-estimator integrated with the Q, scale estimator. The
resulting robust RLDA;, Model was compared with the
classical LDA approach and another robust model
proposed by Lim ef al. (2016) using certain simulated
data. It was observed from the mean misclassification
error that the RLDA,, performs that both linear
approaches. Therefore, RLDA,,, 1s a suitable approach to
solve the classification problems even under various
cases of contamination in data sets.
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