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Abstract: In this study, we establish new travelling wave Solitons solutions by using three methods. These
methods are Tan-Cot method, Extended Tanh-Coth method and modified simple equation method. These
methods are used to obtain new solitary wave trigonometric and hyperbolic functions solutions for the
generalized Schamel-Korteweg-de Vries (3-KdV) equation. These methods have been successfully applied to
construct new solitary solutions as illustrated in figures. The three methods are efficient and reliable for selving
great many nonlinear partial differential equations in Physics.
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INTRODUCTION

The generalized Schamel-Korteweg-de Vries (S-KdV)
equation which contamns a root of degree n nonlinearity 1is
considered as a valid model (Washimi and Taniuti, 1996).
In the study of ion-acoustic waves in plasma and dusty
plasma, the propagation of 1on-acoustic wave in different
types of plasma has been investigated extensively. The
study of different methods for the solution of evolution
equations has enjoyed from both theoretical and practical
of powerful methods (Malfliet, 1992; Jawad, 2013,
Wazwaz, 2005, El-Wakil and Abdou, 2007, Fan, 2000,
Xiaetal, 2001; Yusufoglu and Bekir, 2006; Inc and Ergut,
2005; Sheng, 2006, Feng, 2002; Ding and Li, 1996;
Mitchell and Griffiths, 1980, Parkes and Duffy, 1996,
Tawad et al., 2010).

In this study, three methods are applied. These
methods are the Tan-Cot method, extended Tanh-Coth
method and MSEM to solve the following (S-KdV)
equation given by Al-Atawi (2017) and Yang and Tang
(2015):

1 1
utJr[otJrSun }u"uX +u_ =0, n#0, -, -2 (1

Where:
u(x, t)

The perturbed 1on density in plasma with
non-isothermal electrons

®, 0 andy = Real constants

Equation 1 reduces to the schamel KdV equation for
n =2 8 = 0 and the mKdV equation follows
forn=1/2,8=0.

MATERIALS AND METHODS

The traveling wave solution: Tet consider the non-linear
PDEs i the form:
=0 2)

u

F(u, wou LU uoLuu L, ,)

Yy, ? tt,
In Eq. 1, ulx, t) 18 the travelling solitary wave
solution of non-linear PDE. We assume the transformation

u(x, t) = f€ where, £ = x-At. Then, we use the following
changes (Eq. 3):

Ovoadn 29 Py a3
al) =gk 5 0= gl 5z =m0 @

therefore Eq. 1 transforms to non-linear Ordinary
Differential Equation ODE Eq. 4:

Q(f, f, £, ', ...} =0 (4)

Equation 4 is then integrated with zero constants.
Then, the traveling wave solution for S-KdV Eq. 1 when
we first use the wave variable £ = x-At is:

1 2
-?Lu+[otu“u'+6u“u }ﬂ(u =0 (5)

where, 4 is a constant and v’ = dw/dZ. Integrating Eq. 5
once with zero constant of integration, we can find:

l+n 2+n
—kuJ{nauTJrnBuT}ryu" =0 (6)

1+n 2+n
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The Tan-Cot function method: JTawad (2012a, b) proposed
n the first time that the solution of non-linear ODEs 15 of
the form Eq. 7 and 8:

() = Aten(ug)

< (7)
2
or Eq. 8:

f{&) = AcotP (pE), <— (8)

where, A, 1, P are parameters to be calculated, p and A are
the wave number and the wave speed, respectively. For

Eq &
£(£) = Atan® (pE)
f fABu[tanﬁ (uE) +tan™ (1) |

and their derivatives or for Eq. 10:
£(8) = Acot® (u2)
£ = -ABu| cot®(1iE) + oot (112) | 10

F = AR (B—l)cotm'z)(;,l.f“;)-&-2[300‘[B
(w‘;)-s—(B-s—l)cotmﬂ) (ME)

and so on. Now, to apply tan function substituting Eq. ¢
mto Eq. 6 yields:
no R g
A Atan® (uE)+——A " tan +
an® () + "% A tan )
HS 2+n 2+n

Z—ATtanTB(pé)+ an

+n
v ABU (B0 tan® ) (18) +27ABY tan®
(ME)+7 AR (B+1ytan™*) (ug)

When equate the coefficients of each pair of the tan
functions, system of algebraic equation:

2+n
(B+2) = B
(B+1) # 0
A = ZVABZ;_LZ

12)

nd (
Ry = yAPW (B+1)
2+n
ﬂAl;n _ 0
1+n

YABW (B-1)=0

on solving Eq. 12 yields:

Case 1:
L a
B:n’“‘:l _i Z,A: WZW 2,
ol 2v b
a=0,n=1

then, Eq. 1 reduced to Eq. 13:

u, v’ +yu_ =0 (13)
with:

therefore, Eq. 14:

u(x, t) —(—%Ttaﬂ [-%T (x-Ab) (14)

where, A<0, y>0, §>0. For A =-2, vy =8 =1, Eq. 14
becomes:

u(x, t) = (6)% tan(x+2t) (15)

Figure 1 illustrates the solitary wave mn equation in
Eq. 15 for -10<x<10; O<tel.

Case 2: For A0
1 1
u(x, t) = [3%]2 tanh {sz {x-At) (16)
3 2y

where, y>0, >0. For A=2,y =8 =1, Eq. 16 becomes:

~ (6)7 tanh(x — 26) an

u(x,t)

Figure 2 represents the solitary wave in Eq. 17
for -10<x<10; O<t<1.

Case 3: For n = 2, ¢« = 0. Equation reduces to the
Kdv:

u, +H8uu tyu =0 (18)
and:
[ AP -3A
B=2u (_21(} =
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Fig. 2: The solitary wave in Eq. 17

then:

u(x, t) = -3 tan’ 1(- A

. 19
25 5 2v} (x-A1) (19)

where, A<0, v>0, 8>0. For A = -2, vy =8 =1, Eq. 19
becomes:

u(x, t) =3tan’ (%(x—s—Qt)J (20)

Figure 3 represents the solitary wave in equation
m Eq. 20, for -10<x<10; O<t<].

Case 4: For A>0;

u(x,t)= 3 fanh? (1(}“}5 (x-At) 4y
28 202y
e

where, y<0, 80, for A=2, ¥ =8 =1, Eg. 21 becomes:

u(x, t)

Values

Fig. 4: The solitary wave in Eq. 22

u(x, t) = 3tanh® aé'—(x-Z't)(j (22)

20 7

Figure 4 represents the solitary wave in Eq. 2 for
-10<x<10; O<t<]1.

Case 5: Now, to apply Cot function substituting Eq. 10
mto Eq. 6 and if n = 2, ¢ = 0 yields:

A Acotﬁ(wi)+§A2 cot**(ug)+

vABU (B-1) cot™?) (Lte“;)+2yABZMZ cot? 0 (23)

(HE)+vABW (B+D)cot™ (ug)

Equating the coefficients of each pair of the Cot
functions, we find:

(B+2)=2B
%AZ = APUA(B+]) (24)

2YARTW = -AA
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Fig. 6 The solitary wave m Eq. 28

Therefore, when solve system (Eq. 24), we get:

L
u(x, t) = ﬂcot2 1(_}‘]2 (x-At) (25)
16y 20 2v

where A<0, y>0, =0 For A = -2, y =8 = 1, Eq. 25
becomes:

u(x, ty = 3 cot? l(:>(+2t) (26)
8 2
Figure 5 represents the solitary wave in Eq. 26
for -10<x<10; O<t<1.

Case 6: For A>0;

L
u(x, t) = ﬂcothz 1{kJ2 {X-At) (27)
16y 2| 2v

for A=2,v =38 =1, Eq. 27 becomes:

u{x,t) = gcothz(;(x—Zt)} (28)

Figure 6 represents the solitary wave in Eq. 28
for -10<x<10; O<t<1.
RESULTS AND DISCUSSION
The extended Tanh-Coth method: The method

consists of using the new independent variable (Jawad,
2012a, b; JTawad et al., 2017):

Y = tanh(&) (29)
that leads to the change of variables:

au _ (1_Yz)d£ (30)
dg dy

d*u du d*u
T —2Y(1—Y2)E+(1-Y2)2 o (31)

Now, the solution is expressed in the form Eq. 32:
U(E-Tr v T ey G

T L=t

We balance in Eq. 6, U2+n/n with (d*U/dY?) to obtain:
(2+n/n) m = m+2, then, m =n.

Case 1: Forn = 1. Equation 6 becomes:
LNCNEI 33)
-)\,quEu +§u +yu =0 (

The solution by the extended Tanh-Coth method
takes the followmng finite expansion:

u= an+alY+b1Y'l (34

A by (35)
ay

a;, a, and b, are to be calculated. Substituting Eq. 34 and
35into Eq. 33 will get:
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) B} u(x, 9
oo, +2ab +2aa Y+ c_J+
2 gafv 2+2a,h,Y L+b2Y 2 5

ZY_1+23031+
a’y +

- {3y +a Y +bY )+

8 a03+3a02a1Y+3a0a12Y 2+813Y 3+3(
3

b,+3(a,Y +a,Y )b +b Y 7+

Values

-2v(a,Y-a,Y>bY +bY ) +2by(Y -2y 1+Y ) =0

(36)

The expressions at Y', (i=-3,-2,-1,0, 1, 2, 3) are equal

to zero, then, we have the following system of algebraic
equations:

28~

' (8 +67)b, =0

v-
Y (a+28a, )b’ =0
v (—k-ﬂ)tau+8(auz+alb1)—2\()b1 =0

Fig. 7. The solitary wave in Eq. 40

Then, the extended Tanh-Coth method admits the use
of the finite expansion for Eq. 42-44:

YO -lau+%(auz+231bl)+§au (auz+631b1) -0 37

U =a,tag, Y+b, Y ' +a, Y +b, Y (42)
v (—Jﬁaan +8(anz+a1bl)—2y)a1 =0
3. 3
Y’ (o+28a,)a’ =0 :_;1( —a, b, Y 2a,Y 2, Y (43)
Y (6&12+6y)a1 =0
Solve system (Eq. 37), we get: d*u = 2b, Y +2a,+6b, Y™ (44)
4y’
o o a o (38)
v = E T a, = BT a, =b, = Ty a, a, b, a, b, are to be determined. Substituting
Eq. 42-44 into Eq. 41 will get:
Therefore: 5
2 Afayta Y+b, Y ra, Yo b, Y )+
tanh{x+—t}+ Z
u(xt) =2 2 (39) | +2a,8, Y +a,'Y* +(2a,b, Y +2ab ) 40,/ Y |+
coth[x + —StJ [2a,a,Y?+2a,b, Y +2a,a,Y  +2a,b,Y "'+ .
| 2a,b, Y+2b,b,Y 7 +a,’ Y +2a,b,+b, Y™
for 8= =1 a, (-2Y+2Y" )b, (-2Y ' +2Y ] +2a,

(2v?+2v*)-2b,{-2Y*+2) +2b,
=0

-2

(Y?-2Y'+Y)+2a,

u(x,t) —-31{2+{taﬂh{x+ét}+coth(x+étﬂ} (40)

Figure 7 represents the solitary wave in Eq. 40
for -10<x<10; O<t<].

(1-27?+Y* )+6b, (Y *-27 *41)

Equating to zero all expressions at Y' (i = -4, -3,
-2, -1, 0, 1, 2, 3, 4), we get the following system of

Case 2: Forn = 2, ¢ = 0, Eq. 6 reduces to the KdV algebraic equation:

equation:
5 u Y+ (8b,+12y)b, =0
Py’ =
A uroutn =0 “h) Y (8b,+2y)b, =0
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Y*:-24b,+8(b*+2a,b,)-16yb, =0

Y -ab,+8(agb, +ab, )27, =0

Y':-ha, +%[anz +2a,b, [+8a,b, +2y(a,+b,) =0
Y':-ha, +8(aya, ta,b, )-2ya, = 0 (46)
Y? :-2?La2+8(a12+230a2)—16ya2 =0

Y’ :(8a,+2y)a, =0

Y*:(8a,+12y)a, =0

Solving the system of Eq. 46, we get:
Family 1:

7\,:26% a, :Lg’Y’ a, :b1 :ﬂ a, :b2 :_%(47)

anh (x-26 h{x-26
uix,t) =% 40+12 ' Z(X ) oot (ZX )
3 -tanh’(x-267t)-coth’ (x-26vt)
(48)
for y =& = -1, Eq. 48 becomes:
tanh(x+26t)+coth(x+26t)
u(x,t)=| 40+12 ) :
-tanh?® (x+26t)-coth® (x+26t)
(49)

Figure 8 represents the solitary wave in Eq. 49
for -1<x<1; O<t<].

Family 2:

% =i24/61, a, :(2+1J6)2—8Y o

4 2
a1:b1:+i%, a, =b, =-—

3

Therefore, Eq. 51:
2(2+1J6)+
u(x, t) :% 4(tan(x—i2ngt)+cot(x—i2ngt))+
2(tanl12 (x-i246t)+ coth? (x-inEYt))
(51

The Modified Simple Equation Method (MSEM): Finally,
we apply MSEM proposed by Jawad et al. (2010). We

Fig. 8 The solitary wave in Eq. 49

also apply it on n = 2 the more general Eq. 1. The idea is to
consider the function w(€) in the following form, For

n=2a=0, Le, to the KdV equation in Eq. 41:

2
U(E_.) = A TA, £+A2 [Ej
Y

1

(52)

where, ¥ is the unknown function and ¥+0. Then, the
first and second derivative of w(£) are given by:

2
We | W e W
u, = [A1+2A2 —J{iz}

v v

= A [sz&a&'3wiaw&+2w;
=3 1 w:s

}

wa‘pgwggg '3w2‘p§2‘p§§+22 W; +

5

yf
YW -2y
ur'

24,

substitute Eq. 52-54 i Eq. 41 yields:

2
A AD+A1£+A2“J—E .8
vyt 2

ASH2AA, £+(A12+2AUA2)
yr

2 3 4
lIJr_§2'~_2A1A2 w_E3+A22 ‘lng
A
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3 n
=5 (0}
XXX _3y xx2 x +2y x3 i_'_zng

y y Y g (55)

B oY Y oo Y Y 2 O
yz = 3

+3—-+=0
y Y g

Equating expressions to zero at ', Y% | and
we have the following system of equations:

(8A,+12g)A, =0

(BAA,+20A, )y, -58A Yy By, =0
8

E‘MZ‘FE(AJ_Z +2A0A2)Ey&2'mﬂpﬁwg+ (56)

208 We" +20A W Wi =0
B(8A,) v, + B A, = 0
(8A,-2h)A, =0

We conclude that the system of Eq. 56 can be
satisfied simultaneously for:

AU:%’AIZE 2 ,Azz_ui (57)
3 3 3
xo1
Ve Z_YE‘V& =0 (%)
Wer 20 (59)
W ¥

Therefore, Eq. 60:

he 60
Y= B+A6JT (69)
and:
3
—t
Zh 3 ABJ7
u( ,t):—+— 22| ——— |-
3] Eg
B+A
© (61)
2
FFY
—&
2] sl
d B
B+AeJ:
for Eq. 62:
() S Y
_ e € 62
u(X7 t) 2+3'\/5( 1+eJ2_(x-t) }-12{ 1+e'\ﬁ(x-t)} ( )

u(x,t)

Values

Values .

083

Fig. 9: The solitary wave in Eq. 62

Figure 9 represents the solitary wave in Eq. 62
for -5<x< 5; O<t<].

CONCLUSION

Three methods are applied to get new soliton
solutions for S-KdV equation with a root of degree n
nonlinearity. These methods are the Tan-Cot function
method, extended Tanh-Coth method and MSEM. The
Tan-Cot method provided many solutions depending on
the specific parameter n, so that, many Seliton solutions
are presented and illustrated by figures. While Tanh-Coth
method presented many hyperbolic functions specified
the Soliton solutions for different cases. Finally, forn= 2,
o = 0 MSEM presented new Soliton solution. The three
methods are efficient and reliable to be used to solve the
problems of evolution equations (NLPDs).
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