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Abstract: We show the method of expanding the order of the fimte field. As the order becomes bigger and
bigger, the more powerful security code comes out, since, the encrypting code becomes the more and more
difficult to decript. This is because the number of the occurring cases is exponentially increasing as the order
of the primitive equation of the finite field is increasing. In this study, we show the method to expand the finite
field length. Especially, the zero crossing detector 1s designed and desigmng method 1s precisely described.
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INTRODUCTION

In this study, we describes how to expand the order
of the Reed Solomon code system to make the more
secure and powerful security code. As the order of the
finite field 1s increasing, everytime the nmumber of the
occurring cases is doubling, so, decripting the code
becomes more and more difficult, so that, means the code
becomes the more secure and stable. In this study, we
describes the way to expand the code length of the fimte
field code, especially, the Reed Solomon code. Here,
operation method and apparatus over Galois Field GF(2%)
using a subfield GF(2™%) are described (Keon, 2016). In
this study, we show the designing method to make the
zero crossing detector circuit. Here, the VHDL language
1s used to get the solution and later we can synthesize the
hardware circuit to expand the order of the finite field.
Using this method we can find the solution of the
equations p*+p = v and y*+y*+1 = 0 for transforming the
GF(2") field into the GF(2%) field. We can generalizes the
method for transforming the GF(2™") field into the GF(2™)
field (Billinton and Khan, 1992). In this study, we apply
the algorithm to expand the order from GF(2") to the order
of GF(2*) more precisely. VHDL simulation is shown in the
chapter. In tlus study, we show the expanding method
from the order of GF(2*) to GF(2'"). Finally, in this study,
concluding remarks is made and our future research is
described (Ferguson and Schneier, 2003). The powerful
higher order multiplier and divider will be designed and
real application to the data protection will be performed.
Once higher order is realized, a reversion circuit for
reverting the operated elements represented by the basis
of the GF(2™) field to the elements represented by the

basis of GF(2™) can easily be designed. The
transformming circuits multipler, divider, inverse
circuit are also designed and described (Cormen et al.,

2001).
MATERIALS AND METHODS

Algorithmto expand the order of the finite field:
Anoperational method and apparatus over Galois Field
GF(2™ using a subfield GF(2™) is described in the study.
This field extension gives us a more powerful and secure
code system for us to implement the more stable and
powerful endecription system. The operation apparatus
includes a conversion circuit for converting the elements
represented by a basis of GF(2¥) mto the elements
represented by a basis of GF(2™) with respect to the
elements represented by the basis of GF(2™%). In this way,
we can expand the finite field from the GF(2™) field to the
GF(2%) field (Hyeong-Keon, 2013).

If we summarize the theory when we expand the field
from GF(2%) to the GF(2* field, we do the followings.
Suppose that a root of a Primitive polynomial P(x) of
GF(2%) is a, then e™a*+a™a*+1 = 0. Suppose also that a
root of a primitive polynomial P(x) of GF(2") is v, then
v*+v’+1 = 0. Here, we should find the element yeGF(2%)
which satisfy p+p+1 = 0. Itis ¢'”. Also, we should find
the element PeGF(2%) to satisfy p*p+y = O and it is &’. As
we see we need the zero crossing detector circuit.
Figure 1 shows one example of the zero crossing detector.
A more detailed description 1s as follows. Suppose that
a’'eGF(2%) is represented as a+b [ where a, beGF(2%) and
BeGF(2%). If so, suppose that an arbitrary element over
GF(2%) is:
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3 - 7 -
af = Zi:UZlY +Bzi:421Y
where y 2 GF(2%) and GF(2%), z = {0, I}

Notice also:
=Ly v, B By BY., Br'

and {A;} is mutually mdependent (Schneier, 1996). From
the zero crossing detector, we know veGF(2% is ' and
P is «’. According to the above, the basis over GF(2") of
GF(2%) is:

L.y v, B Br. By’ Br't =
{1, C(-Hg, (1"-238, Oth, (17’ (1126, C“,‘|245, CLIUE‘}

and an arbitrary element 7 1s represented by the above
basis as follows:

238 mnz 245

7 = z0+z1 o P a3 2 o 25 ol +zso

270" = (Z0+71+22426+77 ) HZ1+722+ 75 JoH(Z3+25+27 o' +
(22+26+27) o Hzl+27 o' Hz5+z6+27)a)’ +
(B3+25+26)0° +(z] +zd+26+27)

(1)

From the Eq. 1, a conversion formula from elements
represented by the basis of GF(2") into elements
represented by the basis of GF(2%) can easily be derived
(Schneier, 1996).

OR

Zero crossing detector circuit design to expand the order
of the finite field: Now:

B +B+a'"? = {a0+al o+aZo +a3o’+. .. +a7 o'+

fa0+al o+aZo’ +a3 o' +a7 o+t =0

(2

Hence:

{a0+al a+aZa’+a3e’+...+a7a’} =

a0+al o’ +a2o*+a3 a’+a4 (1,0,1,1,1, 0,0, 0)+
a5(0,0,1,0,1,1,1,0)+a6 (1,0, 1,1, 0, 0, 1, 1)+a7
(1,1,0,0,1, 0, 0,0) = (a0+ad+a6+a7, a7, al+ad+
as+a6, aZ+ad+asS+a7, a5, a3+asS+ab, abd)

(3)
From Eq. 2 and 3:
(ad4+a6+a7, al+a7, al+ad+aS+ad+al,
a6+a3, a2+as5+a7, 0, a3+a5, a6+a7)+ “
(1’ 15 0’ 0’ 1’ 05 0’ 1) = (05 0’ 0’ 0’ 0’ 0’ 05 0)
pp+r=0

Y

Fig. 1: Zero crossing detector application
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Fig. 2: @™+« mapping from « field (b2 element)
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Hence, using Eq. 4, we substitute p=c' (1=0,1,2, ...,
253) to find the solution of the Eq. 4. Ttis &’. The solution
is found by the VHDL simulation. In Fig. 2, we see ¢+
mapping from ¢ (b2 element), b2 = al +a2+ad+a5+ab.

RESULTS AND DISCUSSION

Inverse logic construction and the results: Assumming
that the inverse of Z is Z" and:

Z7 = y0O+Byl
where, [3* = [}+y then:

ZxZ7" = (x0+PBx1) (y0O+By1) = x0y0+

x1yly+p (x1y0+{x0+x1) y1) = 1 (5)
(B =By
So, from Eq. 5:
x0y0+x1yly =1 and (6)

xlyO+(x0+x1)y y1 =0

From the Eq. &:
x0+x1
yo=——
x0 (x0+x1)+yx1
_ x0+x1 1= xl
A VT A
Where:
A = x0 (x0+xDyx1? (M)

Using Eq. 7, we can derive the divider circuit. Here, to
implement the yA® circuit, suppose that the element A is
represented a0Haly+a2y’+a3y’. Where v* = yv"+1. Then,
vA® = (a2+a3)+(a0t+a2+a3) y+a3 y*al+a2) v’ So, the
circuit of the Eqg. 7 can be implemented easily (Keon,
2016). Sumnilarlily, YA 1s represented as the Eq. 8:

YA = (a3+a0 y+al v’ +(a2+a3) v° (8)

CONCLUSION

In this study, we show the field expansion method to
derive the more powerful and secure endecription code.

RECOMMENDATIONS

In future, we want to derive the more economical
hardware to implement the above algorithm. That means
we will derive the powerful ALU which performs the very
powerful secure endecriuption process. Especially yA and
y A’ circuit is implemented for the inverse circuit for the
field transformation (Billinton and Khan, 1592).
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