Tournal of Engineering and Applied Sciences 13 (Special Issue 1); 2322-2329, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Generating test Cases for Model-Based Testing and
Detecting Deadlocks Using Tarjan’s Algorithm

Yasir Dawood Salman, Nor Laily Hashim, Mawarny Md Rejab,
Rohaida Romli and Haslina Mohd
Human Centered Computing Lab., Universiti Utara Malaysia, Kedah, Malaysia

Abstract: Test case generation 1s a task that greatly affects software testing. Model-Based Testing (MBT) has
gained a significant role in generating test cases m recent years. Recent studies have also begun to generate
executable test cases from Unified Modelling Language (UML), As a major issue in system execution, a model
must recognize and identify deadlocks i the early stage of system testing. The current studies did not take into
consideration deadlock detection also did not fulfil adequate coverage criteria. This study proposes an
automated method for generating test cases from UMI state chart diagrams that can help detect deadlocks
during the design phase. These test cases are generated following specified coverage criteria. This method
begins by converting the UML state chart diagram mto an intermediate table and graph where the deadlocks
are marked. The test path and cases are generated afterward. The generated test cases are deemed suitable for
identifying faults and deadlocks in the early phase of software development.

Key words: UMIL statechart diagram, deadlock detection, software testing, model-based testing, recognize,

generation

INTRODUCTION

Software testing is an important phase of software
development that evaluates the functionality or capability
of software systems and compares their actual and
desired outcomes or performance (Biham and Badyal,
2014). This task mvolves a variety of testing activities to
verify whether a software satisfies the eligibility criteria
specified by the customer (Kamalraj and Rajivkannan,
2016).

The automated generation of test cases has been
proposed to reduce the challenges in test case generation
(Korel, 1990). Given that the quality of manual testing
depends on the experience and software design
knowledge of the tester, an automated test case
generation can provide effective test cases with the
appropriate software design. This problem can also
address those problems resulting from human errors and
lack of testing experience. Clarke showed that using
automated test case generation mstead of a manual test
case would reduce the test case generation time by
88%.

Given that the Unified Modelling Language (UML)
diagrams created in the system follow certain
specifications and designs, these diagrams can produce
test cases earlier m the development lifecycle and test
the system before the coding phase. Such early
generation of test cases will enable software developers
to find uncertainties and inconsistencies in the system
specification and design (Jam and Sheikh, 2014).

Test cases are widely generated from source codes,
but this practice presents a disadvantage. Specifically,
software developers must fimish the program before
generating the test cases and generating test cases based
on the system specification and design can help address
this restraint (Doungsa-ard et al., 2008). Furthermore,
generating test cases before the coding phase can help
software developers develop a system for achieving the
desired software design (Beck, 2003).

Software design and testing are both important in the
lifecycle of software. Faultless software design helps
software developers in developing a system and an
excellent software design can help developers adjust to
various software requirements during the software
development process.

The early detection of errors has become a serious
1ssue. As shown i Fig. 1, an error that 1s detected in the
later phases 1s very costly to repair. Moreover, detecting
a fault during the system testing 1s 10 times more costly
than detecting the same fault during the system design.
This same fault 15 up to 30 times more costly if detected
during the system production. Therefore, test cases for
the software system must be generated during the system
design phase.

MBT has attracted many researchers for its ability to
detect separate test cases for the software by using UMIL
diagrams such as state chart, activity and sequence
diagrams (Singh, 2014).

Corresponding Author: Yasir Dawood Salman, Human Centered Computing Lab., Universiti Utara Malaysia, Kedah, Malaysia
2322

J. Eng. Applied Sci., 13 {Special Issue 1): 2322-2329, 2018

150 150%
100
b7
O 501 i
204 0y
5%
lﬂ lx L] T T 1
Requirement Design Code Test Production
Phase detected

Fig. 1: Relative cost of software repair across each stage
of the software lifecycle

UML diagrams have been used to characterize
different issues in software design However, generating
test cases from software design than from program
codesfaces several challenges (Samuel ef al, 2008)that
may be overcome by using the proper software system
(Berardi et al., 2005). The UML state chart diagram can be
used to represent the parallel activities and hierarchy
relationships that are usually present in modern complex
software (Silberschatz et al., 2013).

The UML state chart diagram 1s known for its ability
to determine how the structure of the solution must
appear at the most detailed level. This diagram can also
show the implementation and interaction among different
classes (Bell, 2003).

Many studies have addressed modelling problems
by using UML diagrams to generate test cases. However,
only few have used UMIL diagrams to find deadlocks in
multiprogramming (Ansari, 2012). Deadlocks refer to those
situationswhere a process or a set of processes is blocked
by waiting for some resources that are holed m some
other process (Galvin ez al, 2013).

Accordingly, this study proposes an automated test
case generation method that detects deadlocksby using
an UML state chart diagram as an input from the system
design documents.

Background: This study describes the basic concepts
that are used m thus study mcluding model-based
testing, UMI, statechart, deadlocks and Tarjan’s algorithm
which are all essential in analysing the proposed
method.

Model-based testing: MBT allows software testers to
update a model and quickly regenerate a new test case.
This method is particularly effective in the system that is
currently being tested and its specifications (Tewar1 and
Misra, 2015).

MBT 1s suitable when the requirements are formally
specified through graphical notations such as state charts
and when the test cases are generated using the formal
specifications. Using this method for software testing is

generally preferred for the following reasons it can be
easily understood by both business and developer
communities itseparates the business rationale from the
testing code 1t can quickly achieve automated testing it
allows developers to switch testing instruments if
required or utilize the same model in various stages it
focuses on requirement coverage and it helps developers
design more and code less.

UML state chart diagram: UML state chart diagrams
present a dynamic view of the system (Aggarwal and
Sabharwal, 2012) and identify those events that change
the state of a system throughout its lifecycle. Well-formed
control systems are known for their lack of deadlocks.
Therefore, checking for this particular characteristic is an
important step in the formal verification of control
systems. As far as UML state chart diagrams represent
hierarchical systems, the local deadlocks usually cannot
block the whole system. However, detecting the local
deadlocks 1s also important.

The quality of test casesin UML state chart diagrams
15 evaluated based on coverage criteria and feasibility.
Several testing methods for UMI, state chart diagram have
been proposed in recent years (Aggarwal and Sabharwal,
2012). This diagram describes the complete function of a
system and all of its possible states. Therefore, UML state
chart diagrams can reduce software “deadlocks™ and
other unexpected behaviour by forcing the software tester
to consider each aspect of the software.

Deadlock: A system is deadlocked if each of its processes
158 waiting for an event that can only be triggered by
another process in the same set (Ashfield et al, 2002). A
deadlock may be classified inte communication or
resource deadlock. A commumnication deadlock occurs
when process A tries to send a message to process B,
process B tries to send a message to process C and
process ctries to send a message to process A
(Mallick et al, 2014). By contrast, resource deadlock
occurs when several processes sunultaneously try to
have exclusive access to various resources including
devices, files, locks and servers. This type of deadlock
can be represented using a resource allocation graph. If
the graph contamns a cycle, then the system faces a
deadlock (Mallick et al., 2014).

Deadlocks can be precisely described using a
directed graph called the system resource-allocation
graph (Ramesh, 2010). The set of nodes N 1s partitioned
into two types of nodes, namely, N = [N, N,, ..., N,] which
comprises all active processes in the system and R = [R,,
R;, .., R,] which comprises all resource types in the
system. The set of edges E include request and
assignment edges.

2323

J. Eng. Applied Sci., 13 (Special Issue 1): 2322-2329, 2018

Based on the definition of a resource-allocation
graph, if the graph does not contain any loop, then no
process in the system is deadlocked. Otherwise, a
deadlock may exist.

Tarjan’s algorithm: Tarjan’s algorithm (Tarjan, 1972) 1s
used to find Strongly Comnected Components (SCC). This
algorithm was originally introduced to identify the SCCs
for a graph that 1s constructed from sets of Nodes N and
Edges E. Each SCC represents a sub graph of the original
directed graph in which a path that comprises a series of
directed edges and nodes that connect each node to
every other node in the sub graph. In other words, a cycle
links all the nodes in the SCC unless this SCC only
containg a single node. Condensing or collapsing the
SCCs of a directed graph mto single nodes may result in
a directed acyclic graph that lacks any directed cycles.
Traditional task scheduling or topological sorting
algorithms are applied in this type of directed graph
(Datla et al, 2011). However, as a result of the
Depth-First Search (DFS) process that 13 performed by
Tarjan’s algorithm to traverse a directed graph, the order
mn which the algorithm identifies the SCCs corresponds
to the reverse topological sort of the directed acyclic
graph that is produced after identifying all SCCs
(Tarjan, 1972). Other algorithms for identifying the SCCs
of directed graphs have also been developed including
the Kosaraju-Sharir algorithm (Sharir, 1981) and the
path-based strong component algorithm (Gabow, 2000).
However, Tarjan’s algorithm 18 considered to be the most
efficient and easiest algorithm to unplement because this
algorithm requires a linear search time on the order of N
where N denotes the number of nodes in the directed
graph (Tarjan, 1972). Comparatively, the Kosaraju-Sharir
and path-based strong algorithms donot have the same
scheduling or topological sorting capabilities of Tarjan’s
algorithm.

Tarjan’s algorithm performs a DFS on the graph and
then uses a stack to store the nodes that have been
identified m the search yet are not placed mto an SCC
(Lowe, 2016). This algorithm also detects completed SCCs
starting from the “deepest” level but only performs a
single DFS and can readily detect those states that
belong to the same SCC “on its way down”. Therefore,
this algorithm must “remember” the states by placing
them on a second stack (Geldenhuys and Valmari,
2003).

Literature review: This study presents the survey-related
work on MBT, proposes a test case generation techmque

that uses different UMIL diagrams and provides an
overview of the deadlock detection techmque. Under
various circumstances, several studies have attempted to
generate test cases through MBT based on the system
specifications or design. MBT deals with various types
of UML diagrams including activity, state chart and
sequence diagrams.

Karatkevich (2003) proposed a method for detecting
deadlocks m a system using UML state chart diagrams.
The inputted UML state chart diagram was transformed
into petrn nets and the proposed method was used to
detect the deadlocks in these nets. This method involves
two steps, namely, static analysis, wherein the possibility
of detecting deadlocks m a system is evaluated and
dynamic analysis wherein the reachability of deadlocks
from the imitial state is measured. Dynamic analysis 1s
performed by constructing the sub graphs of reachability
graphs to avold interleaving.

Ansari (2012) manually detected deadlocks i the
early stage using UMIL diagrams and found that the TIMI.
diagram is a powerful modelling language to represent the
scientific research problem. Ansari also proposed a
modelling method for detecting deadlock situations i a
system and showed that the UM model is a very useful
and efficient tool that can help software developers avoid
deadlock situations. UML diagrams are also flexable and
can be easily extended.

Mallick et al. (2014) proposed a method for
generating test cases from a UML sequence diagram and
for detecting deadlocks using a loop detection algorithm.
They converted the UML sequence diagram into an
intermediate graph where deadlock points are marked and
traversed to generate test cases. However, this method
was not tested in real scenarios and failed to satisfy any
coverage criteria.

Al et al (2014) proposed a test-case-based
technique using the UMI, state diagram. They transferred
the UML state chart diagram into an mtermediate graph
called the Finite State Machine (FSM). Each node in this
graph stores the necessary nformation for the test case to
be generated later. Ali et al., 2014 also used additional
parameters for test case generation including pre- and
post-conditions and object constrammed language. Using
FSM as input to breadth-first search, Ali et al. (2014)
generatedand transformed all basic paths to obtain a
suitable test case using the test set generation algorithm.
Their generated test cases satisfied the transition,
transition pair and state coverage criteria. However, apart
from ignoring deadlocks and loops, these cases required
additional mputs to satisfy the coverage criteria.

2324

J. Eng. Applied Sci., 13 (Special Issue 1): 2322-2329, 2018

Jena et al. (2014) proposed a test case generation
approach using the UML activity diagram. They
converted the UML activity diagram into an activity flow
table which in tum was converted mtoan Activity Flow
Graph (AFG). They used DFS to traverse the AFG and
obtain all possible test paths. Afterward, they applied
the genetic algorithm to generate the test cases. This
algorithmwas then called the “Activity Test Case
Generation using Simple Genetic Algorithm”. However,
their test cases only achieved activity node coverage and
could not detect deadlocks.

MATERIALS AND METHODS

Proposed model for generating test cases: The proposed
model transforms the mputted UML state chart diagram
mto an intermediate table and graph. Each nede in the
mtermediate mode stores the necessary information for
test case generation. The mtermediate graphis traced to
generate the basic paths. The suitable test case is
generated and the possible deadlock is identified.

Figure 2 shows the model diagram of the proposed
approach model which begins by using the TUMI state
chart diagram as an input and followed by several steps
to generate the test cases. The first step after getting the
mput 18 to convert it to intermediate table and ntermediate
graph the proposed algorithm will detect the possible
deadlock from them. Then, the test paths will be generated
to generate the fal output the test case using test case
generation algorithm. This study aims to generate test
cases that can detect deadlocks. The UML state chart
diagram goes through six processes to generate the
test cases with high coverage and deadlock notification
rate.

UML. state chart diagram: UML state chart diagram is
used to generate the test cases automatically. This
diagram determines the behaviour of the system by
analysing how its state changes in response to input data,
to the model Lifetime of a reactive system and to the
different states of an object (Swam er al, 2012b).
However, this process needs to go through few steps
before generating the test cases. Figure 3 shows the TUML
state chart diagram applied in this research. The TIMI,
state chart will be transferred later into graph G which is
expressed as follows:

G =(N,E) (M

The set of N consists of non-empty nodes while the
set of E consists of several edges (Diestel, 2012) with each

Intermediate
table

Test paths
generation
Test case
generation

Intermediate
graph

Identity the
possible deadlock

Fig. 2: Proposed approach model

.

Request details

EE—
Chossing

Select trip

Trip selected

 SE—
Process

‘Wating for
payment

Dispenscs
ticket

Ticket issued

Have change

Change (no)

Fig. 3: UMIL, state chart diagram for a ticket vending
machine (Swain et al., 2012a)

edge comprising a pair of nodes. For instance N = (N, N,,
N., Jand E {(N,-N,), (N,-N,), ...}. As shown in Fig. 4,
graphs have natural visual illustrations in which each
node is represented by a point and each edge is
represented by a line that commects two points.

The UML state chart can be formally described as a
quadruple 5, = (S, T, V, S;) where 3,is a set of simple

2325

J. Eng. Applied Sci., 13 (Special Issue 1): 2322-2329, 2018

Table 1: Intermediate table

N N Nods Edge

Sy 1 Initial state Request details

1 2 Select trip Trip selected

2 3 Waiting for payment Check tor payment

3 2 Efficient payment (No payment)

3 4 Efficient payment BRook ticket (payment received)
4 5 Dispenses ticket Ticket issued

5 6 Have change Change (yes)

5 d Have change Change (no)

6 d Dispenses change

nodes, T 13 a set of edges V, 1s a set of variables used n
the state chart and S is the initial state of the state chart
(Kot, 2003).

To explain the algorithm and its phases, a ticket
vending machine was used as an example as shown
m Fig. 3. This machine dispenses tickets to the
customer after receiving monetary payment. The machine
display lists all of the available trips. After the user selects
a trip on the screen, the machine entersits waiting for
payment state. The user then pays for the trip and the
machine checks the payment. When the payment i1s
greater than or equal the indicated price, a ticket will
be dispensed. If needed, the machmne dispenses change
to the user. Otherwise, the machine terminates the
process.

Intermediate table: The state table simplifies large
systems in a comprehensive manner. The convement
tabular form specifies the states, inputs, transitions and
output (Tewann and Misra, 2015). Each nodemn the
graph representsa state while each edge represents the
transitions between two states (Diestel, 2012).

Given that this research uses E and N, the other
elements such as d, represent the maximum number of
nodes in a single graph. Given a node set (N,, N,, ..., N
connected by as their relationships are presented as
follows (Table 1).

] 1

Intermediate graph: The intermediate table was converted
mto an mtermediate graph using the mformation
storedinthe table. An intermediate graph is a directed
graph that constructsa set of each node including mitial,
join, decision, guard condition and fork nodes, that
represents each state. Each border of the mtermediate
graph symbolizes the stream in the UML state chart
diagram.

The intermediate graph 1s expressed as. This
research assumes that each graph starts with a unique
node that comresponds to the initial state and ends in
one node that represents the final states. The initial state

OuO2050202020

Fig. 4: State graph

1s represented as the root of the tree. The nodes in the
graph are then comnected using the edges as shown in
Fig. 4.

Detect the possible deadlock: This reserch uses the
modified Tarjan’s algorithm to find all deadlock paths in
the system from the mtermediate graph. The nodes
are mdexed as the algorithm traverses them. While
returning from the recursion, each node N is assigned
a node N as a representative. N 1s a node with the least
index that can be reached from N. Those nodes with
the same representatives are located in the same SCC
Table 2.

In Fig. 4, an edge from “27-“3” indicates that “3” is
waiting for an event to be completed by process “27.
Therefore, the system contains a deadlock because a
cycle 13 presented. The algorithm in Alghorithm 1 detects
the cycle and its output is 3-2.

2326

J. Eng. Applied Sci., 13 (Special Issue 1): 2322-2329, 2018

Table 2: Test cases for detecting deadlocks

TC No. Input State

Expected output Post condition

1 Request details, trip selected, check
for payment, book ticket payment.
received], ticket issued, changed (yes)

2 Request details (trip selected, check
for payment book ticket (payment
received), ticket issued, change (no)

dispenses payment

Select trip, waiting for
payment, dispenses payment

Select trip waiting for payment,

Dispenses change Non-deadlocked path

Dispenses ticket path Non-deadlocked path

3 Check for payment (no payment) Waiting for payment efficient payment Deadlocked path
Alghorithm 1; Modified Tarjan’s algorithm: Where:

;farjan’s ﬂli:lhgf ith(flg 5 PB = Basic path cyclomatic complexity

nput: graph G = (N, _

Output: deadlock nodes (set of nodes) E = Number of edges of the graph

1. indez=0 N = Number of nodes of the graph

2 Stacks 5 = empty

3 For each node in N do

4. If (node.index is undefined) then
5. Strongconnect (node)

6 end if

7 end for

8 function strongconnect (node)

9. node. Index = index

10. node.lowink = index

11. index = index 1

12. S.push (node)

13. node.on Stock = true

14. For each (node, N*) in E do

15. Tf (N°.index is undefined) then
16. Strongconnect (N°)

17. node.lowlink =min (node.lowlink, N’lowlink)
18 else if (N*.on Stack) then

14. node.lowlink =min (node.lowlink, . index)
20. end if’

21 end for

22, Tf (node.lowlink = node.index) then
23, while (N° = node) do

24 N’.onStack =false

25. add N’ to deadlock nodes
26. End do

27 output deadlock nodes

28 end if’

29, end function

RESULTS AND DISCUSSION

Generate the test paths: After converting the UML state
chart diagram mto the intermediate graph, the DFS
traverses the graph to generate the basic paths. The
initial path can be easily monitored using DFS. This
algorithm also helps achieve all-states, all-transition,
all-transition-pair and all-on-loopcoverage. Given that
DFS cannot handle loops, all loop states are treated
as simple states during the DFS traversal. For example,
within a loop state, the traversal begins with the default
mitial state or at an entry pomnt. During the traversal, the
conditional predicates on each transition are examined.

The nmumber of basic paths 13 calculatedas follows
using the modified McCabe’s formula (Hakansson and
Badran, 2016):

BP=E -N+2 2

Therefore, the basic path of tlus graph is computed
as 8-8+2=2:

Possible test paths:
Tpl: [5-1-2-3-4-5-6-E]
TP: [8-1-2-3-4-5-E]

The possible unique paths generated from the state
chart graph are presented in Fig. 6.

Test cases that detect deadlocks: The test cases are
generated from the paths that have been identified from
the intermediate graph. The generated test cases can be
created based on the information stored in the
intermediate table and all paths from the start node to
the endnode are counted Each path is considered a
test case in addition to any loop path that may exist.
Three test cases are generated from the example presented
in the rows of 2. Column 1 presents the test case number,
Column 2 shows the test case mput, Column 3 presents
the state, Column 4 presents the expected output and
Column 5 presents the post condition for the test case
deadlock condition.

As shown in Table 2, the proposed method detect the
deadlock path in the third state, what allow the software
tester to correct their design for this error not to be appear
in the final coding of the system.

CONCLUSION

This study proposed a method for generating test
casesfrom UML state chart diagrams that can detect
deadlocks. This approach can help software developers
and testers complete the testing process quickly in the
software development lifecycle. The test cases were
generated by transforming the UML statechart into an

2327

J. Eng. Applied Sci., 13 (Special Issue 1): 2322-2329, 2018

intermediate graph. The proposed algorithms generated
all possible path and loop nodes for generating those
test cases that will be used for detecting deadlocks.
The proposed method achieves all-states, all-transition,
all-transition-pair and all-on-loop coverage. An example
was also presented to show that the proposed method
could produce all paths as well as detect and highlight the
possibility of deadlocks.

RECOMMENDATIONS

Future studies may build a fully automatic tool using
this method and further research must be done to combine
the other UML diagrams included in this method.

REFERENCES

Aggarwal, M. and 5. Sabharwal, 2012. Test case
generation from UMIL state machine diagram: A
survey. Proceedings of the 3rd International
Conference on Computer and Communication
Technology (ICCCT"12), November 23-25, 2012, IEEE,
Allahabad, India, ISBN: 978-1-4673-3149-4, pp: 133-140.

All, MA., K. Shatk and S. Kumar, 2014. Test case
generation using UMI, state diagram and OCL
expression. Intl. . Comput. Appl,, 95: 7-11.

Ansari, G.A., 2012, A modeling and detection of dead lock
1n early stage of system usmg UML. Int. J. Comput.
Appli., 39: 16-20.

Ashfield, B., D. Deugo, F. Oppacher and T. White, 2002.
Distributed deadlock detection in mobile agent
systems. Proceedings of the 15th International
Conference on Industrial and Engineering
Applications of Artificial Intelligence and Hxpert
Systems: Developments m Applied Artificial
Intelligence (IEA-AIE’02), June 17-20, 2002, ACM,
Cairns, Queensland, Australia, ISBN:3-540-43781-9,

pp: 146-156.
Beck, K., 2003. Test-Driven Development: By Example.
Addison-Wesley, Boston, Massachusetts,

ISBN:0-321-14653-0, Pages: 219.

Bell, D., 2003. ML basics part II: The activity diagram.
Rational Software, San Jose, California, USA.
http://1sabelle.vincentvanrooijen.com/container%5C
process%5CRisk%20reduction%20with%20the% 20
RUP%20Phase% 20Plan. pdf.

Berardi, D, D. Calvanese amd G. de Giacomo, 2005.
Reasomng on UML class diagrams. Artaf. Intell., 168:
70-118.

Biham, A. and S. Badyal, 2014. Optinizing software
testing and test case generation by using the concept
of Hamiltoman paths. Intl. J. Eng. Trends Technol.,
10: 318-322.

Datla, D., HI. Volos, S.M. Hasan,] H. Reed and T. Bose,
2011. Task allocation and scheduling in wireless
distributed computing networks. Analog Integr.
Circuits Signal Process., 69: 341-341.

Diestel, R., 2012. Graph Theory. Springer, Berlin, Germany,
Pages: 437.

Doungsa-ard, C., K. Dahal, A. Hossam and
T. Suwannasart, 2008. GA-Based Automatic Test Data
Generation for UUML State Diagrams with Parallel
Paths. In: Advanced Design and Manufacture to Gain
a Competitive

Edge, Yan, X.T., C. Jiang and B. Eynard (Eds.). Springer,
Berlin, Germany, ISBN: 978-1-84800-240-1, pp:
147-156.

Gabow, HN., 2000. Path-based depth-first search for
strong and bicomnected components. Inf. Process.
Lett., 74: 107-114.

Geldenhuys, J. and A. Valmari, 2005. More efficient
on-the-fly LTL verification with Tarjan’s algorithm.
Theor. Comput. Sci., 345: 60-82.

Hakansson, J. and S. Badran, 2016. Evaluating cyclomatic
complexity on functional JavaScript. BA Thesis,
Lmnaeus Umversity, Sweden.

Jaim, E.S. and E.M. Sheikh, 2014. A novel test case
generation method through metamorphic priority for
2-way testing method UMBCA implementation
criteria. Intl. I. Eng. Manage. Res., 4: 157-163.

Jena, A K., 3K. Swam and D.P. Mohapatra, 2014. A novel
approach for test case generation from UML activity
diagram. Proceedings of the 2014 International
Conference on Issues and Challenges in Intelligent
Computing Techniques (ICICT’14), February 7-8,
2014,TEEE, Ghaziabad, India, TSBN:978-1-4799-2900-9,
pp: 621-629.

Kamalraj, R. and A. Rajivkannan, 2016 Test case
classification using tuned fuzzy logic with test case
reusability for test suite reduction. Asian J. Inf
Technol., 15: 1437-1442.

Karatkevich, A., 2003. Deadlock analysis in statecharts.
Proceedings of the 2003 Conference Forum on
Specification and Design Languages (FDL’03),
September 23-26, 2003, Goethe University Frankfurt,
Frankfurt, Germany, pp: 414-425.

Korel, B., 1990. Automated software test data generation.
TEEE. Trans. Software Eng., 16: 870-879.

Kot, M., 2003. The state explosion problem. MCS Thesis,
Faculty of Electrical Engineering and Computer
Science, Techmcal University of Ostrava, Ostrava,
Czech Republic.

Lowe, G., 2016. Concurrent depth-first search algorithms
based on Tarjan’s algorithm. Intl. J. Software Tools
Technol. Transfer, 18: 129-147.

2328

J. Eng. Applied Sci., 13 (Special Issue 1): 2322-2329, 2018

Mallick, A., N. Panda and A.A. Acharya, 2014. Generation
of test cases from UML sequence diagram and
detecting deadlocks using loop detection algorithm.
Intl. J. Comput. Sci. Eng., 2: 199-203.

Ramesh, S.V., 2010. Principles of Operating Systems.
Laxmi Publications Pvt. Ltd., Ghaziabad, India,
[SBN:978-93-80386-17-1, Pages: 189.

Sammuel, P., R. Mall and A K. Bothra, 2008. Automatic test
case generation using Unified Modeling Language
(UML) state diagrams. IET. Software, 2: 79-93.

Santiago, V., N.L. Vijaykumar, D. Guimaraes, A.S. Amaral
and E. Ferreira, 2008. An environment for
automated test case generation from statechart-based
and finite state machine-based behavioral models.
Proceedings of the IEEE International Conference
on Software Testing Verification and Validation
Workshop ICSTW'0B, April 9-11, 2008, TEEE, Sac Jose
Dos Campos, Brazil, ISBN: 978-0-7695-3388-9, pp:
63-72.

Sharir, M., 1981. A strong-comectivity algorithm and its
applications in data flow analysis. Comput. Math.
Appl, 7. 67-72.

Silberschatz, A., P.B. Galvin and G. Gagne, 2013.
Operating System Concepts Essentials. 2nd Edn,
Tohn Wiley & Sons, Hoboken, New Jersey, USA.,
[SBN:9781118844007, Pages: 784.

Singh, R., 2014. Test case generation for object-oriented
systems: A review. Proceedings of the 4th
International Conference on Commurnication Systems
andNetwork Technologies (CSNT’14), April 7-9,2014,
IEEE, Bhopal, India, ISBN:978-1-4799-3069-2, pp:
981-989.

Straunstrup, J., HR. Andersen, H. Hulgaard, I.
Lind-Nielsen and G. Behrmamn et al., 2000a.
Practical verification of embedded software. Comput.,
33: 68-75.

Swain, R.K., P.K. Behera and D.P. Mohapatra, 2012.
Generation and optimization of test cases for
object-oriented software using state chart diagram.
Software Eng., Vol. 1,

Swain, R K., P.K. Behera and D.P. Mohapatra, 2012b.
Minimal test-case generation for object-oriented
software with state charts. Intl. I. Software Eng. Appl.,
3:1-21.

Tarjan, R., 1972. Depth-first search and linear graph
algorithms. SIAM J. Comput., 1: 146-160.

Tewari, A. and A.K. Misra, 2015. An approach to model
based test case generation for student admission
process. Intl. J. Tnnovative Sci. Eng. Technol., 2:
818-825.

2320

	2322-2329_Page_1
	2322-2329_Page_2
	2322-2329_Page_3
	2322-2329_Page_4
	2322-2329_Page_5
	2322-2329_Page_6
	2322-2329_Page_7
	2322-2329_Page_8

