Tournal of Engineering and Applied Sciences 13 (Special Issue 2): 3059-3066, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Key Resources Integrity Verification Scheme on Android Platform

"Yongzhen Li, 'Zhenzhen Wang and “Hyung-Jin Mun
"Department of Computer Science, Yanbian University, 133002 Yanji, China
*Department of Information and Communication Engineering, Sungkyul University,
14097 Anyang-City, Republic of Korea

Abstract: Nowadays with Android mobile phones occupied a large market share, the security of application
programs has gotten more and more attention. To protect the security and integrity of application programs on
android platform, a flexible key resource integrity verification scheme was proposed. The scheme principally
utilized security-file which 1s created by the security-file generator on the developer’s server to verify resources
mtegrity. Then APPs downloaded the security-file from the server and the procedure of integrity verification
1s processed by Java Native Interface (JNI). The scheme also provides error correction module by downloading
updates in the case of a validation failure. The experimental result showed that this scheme had good ability
against decompiling attack and tampering attack and the performance of the application has not been affected.

Key words: Integrity verification, security-file, decompiled, Java native interface Android, application, affected

INTRODUCTION

With the popularity of mobile mternet Android
smartphone 1s developing rapidly. The Android operating
system has been supported by the major mobile phone
manufacturers and the vast number of developers
because of its Linux Kernel and open source. In our daily
life, smartphones have become more and more significant
as one of the commumcation tools.

Under such a background an application program on
Android platform has gotten explosive growth but its
security problem has been intensified. However, the
ubiquity of smartphones loaded with the android system
makes them more attractive targets to attackers. Currently,
differentiated forms of malwares exist m a lot of
smartphone platforms, alse in Android (Younan et al,
2006). According to McAfee Tabs statistics in the fourth
quarter of 2014, mobile malware has broken through
600 million which increased by 14% than the third quarter
(Huang et al., 2013). The unsafe applications not only
mfringe on fruits of labor of developers but also pose a
serious threat to user privacy, even seriously affecting the
future development of the Android application market.
Recently, the safety of Android application has
become an 1ssue to be addressed in researching not only
domestically but also, globally (Shu et al., 2014). But the
study of Android application protection s still in its
mnfancy.

Application protection technology has caused widely
public concern m the early of the 1980°s. Kent (1980) puts

forward the concept of application protection m the
perspective of developers. He pointed out that piracy
prevention, tamper-proof and reverse engineering
prevention is the main purpose of application protection.
However, there is no acknowledged technology for
tamper-proof technology at present in terms of mtegrity
verification, 1t 1s worth of studying further (Felt et of.,
2011).

Background
Hash function: The hash function, H is the function that
has an arbitrary length message, M and a fixed length
output, H (M) to M is called “message digest”.
(Davies and Price, 1980). A good hash function has
following characteristics, the outcome of the function
toconsiderable mputs 18 equalized and calculated
distinctively in random values. Figure 1 illustrates the
common-operation of a cryptographic hash function.
Hash function for message authentication 1s
proposed by Mitchell et al (1989). Message
authentication 1s a mechanism or a service which 1s used
i verifying the mtegrity of a message. Message
authentication checks the validity of the data sender and
whether the received data 1s the message sent by the
sender.

Security-file: Nowadays, hash function algorithm applies
to the data mtegrity vernification widely. Hash fimction is
able to map a message in arbitrary length into the hash
value m fixed length. This study provides the ability of

Corresponding Author: Hyung-Jin Mun, Department of Information and Communication Engineering, Sungkyul Umiversity,

14097 Anyang-City, Republic of Korea

3059

J. Eng. Applied Sci., 13 (Special Issue 2): 3059-3066, 2018

L bits

A
v

Message or data block M (variable length) L

A4

| Hash value h (fixed length) |

Fig. 1: Hash function th = H(M))

Table 1: Format of security-file
Security-file (*.sec)
Protected file 1

File names

File name (fileNarne)
Creation data (fileData)
File size (fileSize)

Hash value (hashValue)
File name (fileNarne)
File size (fileSize)
Creation data (fileData)
Hash value (hashValue)
File name (fileNarne)
File size (fileSize)
Creation data (fileDate)
Hash value (hashValue)

Protected file 2

Protected filen

the integrity verification using a security-file which is a
collection of hash values including all key resources
specified by the developer. The security-file’s each entry
stores resource name, the create date of file, size of the file
and the hash value, it has a special file suffix (.sec)
acquiescently. The format of the security-file as in
Table 1.

In the mtegrity verification scheme,
security-file plays a decisive role. To protect the security
of security-file, the client download security-file from the
server when starting for the first time, after that the client
only verifies whether hash value is consistent with the
corresponding resource name.

whole

Android NDK and JNI: In Android, most of Android
application developers wusually prefer using Java
with Android NDK to solely using the Java language
(Kam et af., 2012). Using native libraries from C/CH+ code
i Android Apps. android NDK (Ratabouil, 2015) known
to be a toolset 1s able to embed components. Although, to
use native code rarely enhances the performance of
application android NDK is efficient in terms of
CPI-intensive operations, signal processing and physics
simulation. Tt is efficient when re-using a large scale of
legacy C/Ct++ code (Gordon, 1998).

IniClient class

Native methods
declaration

native getMessageDigest

| Dalvik VM |

-—

v
| Java_com_example_jni

iClient_a Strd
—| Java_com_example _jni_JniClient_addStr{i)
—l native String getMessageDigest(String) |

Native methods
implementation

libnative.so

Fig. 2: Example native function calls via. INT

INI (Anonymous, 2017) 1s an abbreviation of Java
Native Interface, it 1s a programming framework that makes
Java code rumming 1n the Java Virtual Machine (JVM) call
and be called by native libraries and application
i C/C++ and other assembly
languages (Lee ef al, 2011). Since, the Java language
itself is not suitable for development of security software,
Google has provided Android NDK (Android Native
Development Kit) to help developers to access native
C/CH+ code from Tava layer (Budd, 1999).

INT is used to reuse an important large mass of native
code written in C/C++ to enhance the application
performance using time-critical code. There are negative
effects resulted from INI including loses of the portability
and safety of Apps (Lee and Jeon, 2010). But there are
more positive effects and following are advantages of
using JNI technology.

The Java layer code can easily be decompiled while
C/C+ code more difficult. Using C/C++ code to develop
application has higher execution efficiency. Using C/CH+
code to develop dynamic link libraries is easier to
transplant.

Figure 2 illustrates one example of native function
calls via. JNI. Figure 3 describes three different native
method declarations from TniClient class with the Android
application. They need to be declared in a class with
respect to an Android application. To write a “native”

which are written

directive in prior to writing the return type and name of
the method 18 necessary. Figure 2 depicts three different
native method implementations in libnative. So, shared
library with native C code. In an Android application
enviromment, native methods have to have one to one
correspondence to the native method declaration in a
class (Qian et al., 2016).

3060

J. Eng. Applied Sci., 13 (Special Issue 2): 3059-3066, 2018

public class JniClient {

static public native String addStr(String strA, String strB);
static public native int addInt(int a, int b);
static public native String getMessageDigest(String msg);

}

Fig. 3: ImiClient class

By developing an Android application, we are able to
utilize the native code, shared libraries, under the standard
System. LoadLibrary() call. The argument of System.load
Library() 1s the name of the library. We should pass in
“native” if we wanted to use the shared library,
“libnative.so”.

MATERIALS AND METHODS

Proposed key resources integrity verification scheme: In
Android, mtegrity protection did not consider other
resources n the existing scheme such as wmages, audio
and so on other than dex file and did not provide the right
resources to download in the case of a validation failure.
The scheme m this study, not only can specify a
particular resource dynamically by developers but also
provides error correction module by downloading
updates.

Preparation-generating security-file: A security-file 1s
generated dynamically according to developer’s
requirements. We developed a tool to help developers
produce security-file, the specific process as shown in
Fig. 4. The step to generate security-file 1s:

* Choosing a project directory path

» Choosing to be protected files or resources in
“Project files” such as “logo.png™ and then press the
“Add” button, the selected items will be shown n
“Added files”

* Generating the security-file

Communication between client and server: When the
application starts, it will check whether there is
security-file if not it will downleoad security-file from the
server. In order to prevent data from falsifying during the
transmission, the specific process as shown m Fig. 5 and
the whole validation process is as follows:

* The server calculates hash value of the security-file
as the digital signature

¢ The server generates encrypted hash value by
encrypting the hash value calculated in step j with a
private key

¢ The security-file and encrypted hash value are sent
to the client

¢ The client decrypts the encrypted hash value with
public key which 1s saved in local

* The client calculates hash value of the security-file

s The client verifies two hash values obtained in step
m and step n, respectively

If the result of step o is true, we can ensure that the
security-file has not been falsified during transmission.
Even though an attacker would tamper security-file, the
private key cannot be deducedas far as the server is not
exposed because tampered security-file 1s encrypted with
the private key.

Integrity verification: Integrity verification was designed
1in Java native layer, using JNI to prevent the application
from reverse engineering. The times of integrity
verification are determined by the number of key
resources, times add when the application runming to key
resource. The overall flow chart is shown in Fig. 6.
Resources mtegrity verification is implemented using NI,
mainly requires the following steps:

Step 1: The Android application ensures whether there 1s
security-file, if not then it will send a request to the server
to download the security-file.

Step 2: There 1s a security-file and then the application
needs to verify its integrity. If the result is false, the
application also needs to send a request to download the
unbroken security-file.

Step 3: The Android application loads program to run on
the hypothesis that step 1 and 2 are true.

Step 4: Once the runmng program meets protected
resource, the application should check the hash value of
protected resource utilizing the secunity-file. If the
validation fails, the application should download
unbroken and corresponding protected resource from the
server.

Step 5: Repeating step 3 and 4 until the application come
to the end.

3061

J. Eng. Applied Sci., 13 (Special Issue 2): 3059-3066, 2018

L&/ Security-file Generator [ESRESET x]

Choose project: D¢ \[DK\werkspace\TestNdk | Browsing.. : ®

Project files Added files

o & gen - To be protected files
ﬁ hash txt activity_splash.xml
ic_launcher-web.png logo.png

&y ini

€ livs
lintxmi

& oo

e} proguard-project xt

projectproperties

res Add @
¢ & drawable-hapi |
€39 ic_launcher.png
@ logo.png
@9 splash.png

o ED) draw
o~ (a8 dra [T
o @) dra -

o (.9 drawable-xxhdpi
¢ &9 layout

&9 activity_main.xmi
@ activity_splash.xmi
@ activity_verify xml =

o
o
o
?

Delete

Generate hash security-file @

Fig. 4 Security-file generator

Client Server

erificatio
C_jﬂash (_)Hash Sty e RESULTS AND DISCUSSION
value 6 value

4 ?Decryption This study has conducted experiments from the

v0
—Eneryption aspects of feasibility and the defense of the compiler and
S @ has made a comparison about INI mvoking and Java

invoking. The feasibility experiment will prove the scheme

@ v0 is practical and can ensure that the critical resources are

Security Encrypted || o 0 Security Enerypted not tampered. When security-file exists and hash value of
file hash value || file hash value : : : :

key resources 1s comrect, the application will run

correctly and there 1s no difference between ordinary
Fig. 5: Transmission process applications.

Decompiler experiment: Decompiler experiment proves
that JNI invoking can enhance the ability against
decompiling and make the application more secure. As we
y all know an apk file is a compression file containing
S‘le‘my‘fge various resources that are comprised of an Android

application. Android code will be packaged into.dex file
by apktool, dex is Android Dalvik executable program. We
can decompile. Dex file with baksmali and smali tools, then
we obtamn some smali files. The smali files composed of
Dalvik byte-code which shows mstructions being used as
well as registers, objects and literal values which
secures readability. The smali files also contain messages
about instance variables, data types, fimctions and so
omn.

Download protected
resources

Execute
program

What we need for attention is the high lighted part in
red horizontal line and box in Fig. 7, we can see clearly
that the hash algorithm 1s SHA 1 and the implementation
Fig. 6: The overall flow chart of scheme of SHA 1 also can be found which 18 viewed by TD-GUL

3062

J. Eng. Applied Sci., 13 (Special Issue 2): 3059-3066, 2018

line 21
const-string v3, “hash.sec”

invoke-static {p0. v3}, Lcom/example/minatest/FileReadWrite;
- »getContentFromA ssets(Landroid/ content/Context;Ljava/lang/String;) Ljava/lang/String;

move-result-object v0
line 22

local v0, "filebeanString™:Ljava/lang/String;
new-instance v2, Leom/example/hash/SHAT;

invoke-direct {v2}, Lecom/example/hash/SHA1; -><init>() V

line 23
local v2, "shal™Lcom/example/hash/SHAL;

invoke-virtual {v2.v0}, Lcom/example/hash/SHAL; ->Digest(Ljavalang/String;) Ljava/lang/String;

Fle Edit Navigate Search Help
gldqd e

classes-dex2jarjar ¥

- fif android supportv
o # com.example
2§ bean

[-f encaderati
(=-f hash

[M3

- [1) BuldConfig
wm DataHolder
#-{1] DecompiledActivy

ol >

DecompiledSHAlActivitv.class ¥ | SHALcass | MDS.cass

package com.example.testndk;

%|import android.app.Betivity;

public class DecompiledSHAlActivity extends Activity
{

.)] SHAL TextView textView;

B

*‘H:‘ i protected void onCreate (Bundle paramBundle)
i 1 = {

'f’E minatest super. onCreate (paranBundle) ;

\Hj testndk setContentVien(2130903040);

this.textView = ((TextView)findViewByld(2131296256));

String strll= FileReadWrite.getContentFromdssets(fnis, "hash.zec”);
String str? = new JEAL().Digest(strl);
this.textView. setText (str2);

1] DecompiledSHALActivity]
- 1] DownLoadManager It
{t-[1] HashActhity
#{1] MainActiity
#-[1] MyActivity

#-{1] OldAdtivity

wIR i £ i

Fig. 7: Decompiled code and source code using Java

tool. However, if we use INT invoking to verify integrity,
although the code is decompiled, attackers do not known
what hash algorithm used by developers, we can see it
from Fig. 8. JmClient class only has method declarations
that is public static native String get Message Digest
(String msg). Because native method is not in Java
layer, even if be decompiled also won’t reveal native

method.

¥ ¥ ¥ ¥ ¥ — ¥ ¥ ¥ ¥———

Performance experiment: We present the different
aspects regarding performance between Android
application with JNI and Android application using the
same algorithm written with Java language solely. We
estimate INT communication lag incurred from TNI. The
application of owrs employs the shared library not
performing computing operation but passing a string to
the App. INI mvoking spends 38 msec i1 105 tunes, so, we

3063

J. Eng. Applied Sci., 13 (Special Issue 2): 3059-3066, 2018

line 26
congt-sfring v2, “hash.sec”

move-result-object v0

invoke-static {p0, v2}. Leom/example/minatest/FileReadWrite;
->gefContentFromAssets(Landroid/content/Context;Ljava/lang/String;) Ljavallang/String;

line 27

local v0, "filebeanString":Ljava/lang/String;
invoke-static {v0}, Leom/example/jni/TniClient;
-»getMessageDigest(Ljava/lang/String;) Ljava/lang/String:

Fle Edt Navigate Search Help

dlasses-dex2jarjar %

-} android supported
JI’;B com.example
i bean
- encoderutl
B8 hash

1 D5
#{1] SHAL

S

J| IniClient

1) TestINI

1 mina

- minatest

- testndk

B 1) BuldConfig

& [J) DataHolder

- [J) Decompiledhctivy
4-[J] DecompiledSHALActity
#-[J) DownLoadManager
#-{J] HashActivity

1) MainActivity

- [J) Myhctviy

v

™S

DecompledSHA1 Actvity. cass

SHALclss | MD5.cass

IniClient.class

'pacxage Com. example. jni;

public class JniClient

[

public static native int AddInt(int paramlntl, int paramInt?);

public static native String AddStr(String paramStringl, String paramString2);

public static native String getInfeMDS(String paramString);
public static native String getInfoSHAL(String paramString);

public static native String getInfnSHA256(String paramString);|

public static native String getM:

ageDigest (String paramString);

il

——

Fig. 8: Decompiled code and source code using TNI invoking

can assume that once time consumption is minimal, the

Table 2: The experimental data about efficiency of NI and Java

slight delay can be ignored to some extent. The MD3 SHAL

experl.mente.ll data about the effwlency of INI e okmg and Variables JNI (msec) Java (msec) JNI (msec) Java (msec)

Java mvoking 1s elaborated m Table 2. To unprove the 500 7,470 142.13 29.60 123.56

credibility of the experiment, we did two experiments using 700 104.75 194.08 113.44 163.34

two different hash algorithms, the one is MD35 and the 1000 147.81 285.12 155.64 235.89
2000 309.41 635.96 324.59 567.08

other is SHA1. The histogram (Fig. 9) is drawn by

3064

J. Eng. Applied Sci., 13 (Special Issue 2): 3059-3066, 2018

700 @

O JNI

JAVA
6004

500
4004

3004

aal

®)

Time-consuming (msec)

600
500
400 1
300

200

aisill I

T T T
500 700 1000 2000
Running time

Time-consuming (msec)

Fig. 9: Comparison diagram about efficiency of NI and
Java

MATLAB based on the experimental data in Table 2 to
display clearly. According to the comparison diagram and
after analysis and comparison, the efficiency of JNI
mvoking of MD5 15 1.918 times higher than Java invoking
and SHAT is 1.564 times.

CONCLUSION

Key resources integrity protection scheme is crucial
in protecting application resources. Tt not only prevents
key resources from tampering and also provides error
correction function. By providing error “correction”
function, it requires the application must be
connected to the server, it is the prerequisite for the
protection scheme can be executed comrectly. The
experimental results showed that the critical resource
integrity protection scheme can provide more secure on
the Android platform, at the same time through TNI
mvoking can effectively prevent the application from
decompiled.

REFERENCES

Anonymous, 2017. TJava native interface. Wikimedia
Foundation, Inc., San Francisco, California,
USA https://en.wikipedia.org/wiki/JTava Native
Interface.

Budd, T., 1999. C++ for Java Programmers. Pearson
Education, London, England, UK., TSBN:978-81-317-
6472-5, Pages: 284.

Davies, D.W. and W.L. Price, 1980. The Application of
Digital Signatures based on Public key
Cryptosystems. National Laboratory,
Teddington, England, UK.

Felt, AP, M. Fmfter, E. Chin S Hamna and
D. Wagner, 2011. A swvey of mobile malware
m the wild Proceedings of the 1st ACM
Workshop on Security and Privacy in Smartphones
and Mobile Devices, October 17, 2011, ACM,
Chicago, Illinois, USA., ISBN:978-1-4503-1000-0, pp:
3-14.

Gordon, R., 1998, Essential JNI: TJava Native
Interface. Prentice-Hall, Upper Saddle River,
New Jemey, USA., ISBN:9780136798958, Pages:
499,

Huang, H., S. Zhu, P. Liu and D. Wu, 2013. A
Framework for

Physical

Evaluating Mobile App
Repackaging Detection Algorithms. Tn: Trust and
Trustworthy Computing, Huth, M., N. Asokan, S.
Capkun, 1. Flechais and I.. Coles-Kemp (Eds.).
Springer, Berlin, Germany, ISBN: 978-3-642-38007-8,
pp: 169-186.

Kent, 5.T., 1980. Protecting externally supplied software
in small computers. Ph.D Thesis, Massachusetts
Institute of Technology Cambridge, Cambridge,
Massachusetts.

Kim, Y.J, SJ. Cho, KJ Kim, EH. Hwang and
SH. Yoon et al, 2012, Benchmarking Java
application using INI and native C application on
Android. Proceedings of the 12th International
Conference on Control, Automation and
Systems (ICCAS’12), October 17-21, 2012, TEEE, JeTu
Island, South Korea, ISBN:978-1-4673-2247-8, pp:
284-288.

Lee, 8. and I.W. Jeon, 2010. Evaluating performance
of Androd platform using native C for embedded
systems. Proceedings of the International

Conference on Control Automation and Systems

(ICCAR), October 27-30, 2010, TEEE, Gyeonggi-do,

South Korea, ISBN:978-1-4244-7453-0, pp:

1160-1163.

3065

J. Eng. Applied Sci., 13 (Special Issue 2): 3059-3066, 2018

Lee, Y.H., P. Chandrian and B. Li, 2011. Efficient Java Shu, T, I. Li, Y. Zhang and D. Gu, 2014. Android app
native interface for Android based mobile devices. protection via. interpretation obfuscation.
Proceedings of the IEEE 10th International Proceedings of the IEEE 12th International
Conference on Trust, Security and Privacy in
Computing and Commumnications (TrustCom),
November 16-18, 2011, TEEE, Changsha, China,
ISBN:978-1-4577-2135-9, pp: 1202-1209.

Conference on Dependable, Autonomic and
Secure Computing (DASC™14), August 24-27, 2014,
TEEE, Dalian, China, TSBN:978-1-4799-5079-9, pp:

63-68.
Mitchell, C., D. Rush and M. Walker, 1989. A k)

HERETL s L SR AT arser, 178 A retmark o Younarn, Y., D. Pozza, F. Piessens and W. Jooser, 2006.
hash functions for message authentication. Comput.) ; ;
Secur.. & 55-58. Extended protection against stack smashing

Qiar, Q., T. Cai, M. Xie and R. Zhang, 2016, Malicious attacks without performance loss. Proceedings of
behavior analysis for android applications. Intl. T. the 22nd Annual Conference on Computer
Netw. Secur., 18: 182-192. Security Applications (ACSAC'06), December

Ratabouil, S., 2015. Android NDK: Beginner’s Guide. 11-15, 2006, IEEE, Miami Beach, Florida, pp:
Packt Publishing Ltd, Mumbai, India. 429-438.

3066

	3059-3066_Page_1
	3059-3066_Page_2
	3059-3066_Page_3
	3059-3066_Page_4
	3059-3066_Page_5
	3059-3066_Page_6
	3059-3066_Page_7
	3059-3066_Page_8

