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Abstract: Principal Component Analysis (PCA) has received growing attention in its latent potential in image
compression. However, the image reconstructed from PCA compressed data can be improved m terms of umage
quality and compression ratio. In this study, a modified PCA algorithm was considered. In this algorithm, the
eigenvectors derived from the original image was used to reconstruct the compressed data. Performance
evaluation show that PSNR and SSIM obtamed for image compressed by the proposed modified PCA are
significantly higher then the conventional PCA algonthm (p<i0.05). The objective evaluation results were further
confirmed by the visual inspection of the output images where less streaks and noise were found on image
compressed by the proposed modified PCA at compression ratio as high as 90%.
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INTRODUCTION

The goal of image compression 1s to reduce the
nmumber of bits used to represent an image in order to
facilitate data transmission and storage. Transform based
methods such as the Discrete Cosine Transform (DCT),
Principal Component Analysis (PCA) and Discrete
Wavelet Transform (DWT) are lossy compression
methods commonly used in image compression. Due to its
optimality of signal decorrelation and energy compaction,
the PCA (also called the Karlnmen-Loeve (KL) transform)
achieves 1mage compression by reducing the high
dimensionality of the data inherent in an image while
minimizing errors in the mean-square sense (Wang, 2012).
In other words, PCA 1s a linear transformation that
removes redundancy by decorrelating the data so that the
information in an image can be represented more
efficiently. It has been used in many pattern recognition
(Webb and Keith, 2011; Baese and Schmid, 2014) and
image processing (Ting et al., 201 5; Costa and Fiori, 2001;
Clausen and Wechsler, 2000) application as well as for
medical image compression. Although, colour image
compression using PCA 1s ureversible, it 1s bemg
employed by Carevic and Caelli (1997) as an aided tool to
decorrelate the spatial and spectral redundancy typically
exhibited n a colour image. The research studies show
that PCA and its variation (Taur and Tao, 1996; Bonab
and Mofarreh, 2012; Pandey et al., 2011, Kumar et al.,
2008; Lv and Zhao, 2005, Nowrozian and Hassanpour,

2014) can be successfully applied in image compression.
However, the image quality can be severely affected when
the compression ratio 18 high. In view of thus, this study
proposed a modified PCA algorithm that strives to
maintain image quality even at a high compression ratio.

MATERIALS AND METHODS

Since, this study deal with image compression in
particular, the description of the algorithm will be
explained in comection with an image. Image can be
represented by a matrix where each element along the
rows and columns 1s the value of intensity at its specific
location. The intention of applying PCA on an image is to
reduce the dimensionality of the image in a way that the
data has been compressed. Consider that PCA 1s applied
on an image X with a size of mxn, the output data can
achieve a reduced size of p>m. Tt is therefore meant that
the number of dimension n i1s now reduced to p
dimensions. PCA started with the elements of the original
image minus the mean of each data row, m:

X-m= X Y]

The next step is crucial in PCA as to obtain the
covariance matrix of X The covariance matrix measures
the relationships between the dimensions as stated in
Eq 2
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The diagonal elements in Eq. 2 are the variance of
each dimension itself. It 1s obtained as shown m Eq. 3
where, N 1s the total number of elements m a dimension:

m

206D 3)
.
! N-1

The off-diagonal elements in Eq. 2 are the covariance
and they are symmetrical, eg., Cov,, = Cov,,. Tt is a
measure of how a dimension deviate with respect to each
other as formulated in Eq. 4:

(X, DX, D) 4

Cov, = Cov, ==

N-1

Next come n step 1s to obtain the eigenvectors of the
covariance matrix that consists of the information of image
characterization. An eigenvector of a matrix is a vector,
when multiply to a transformation matrix or i this case
covariance matrix, scaled from its original position without
changing the direction:

AV=LV ()
Where:
A = Transformation matrix in this case, covariance matrix
V = Eigenvector
A = Higenwvalue

Eigenvector can only be found for square matrix and
given a nx*n square matrix that does have eigenvector,
there will be n of them. The search for eigenvector of an
image with a large data dimensions can be tedious but 1t
can be done at ease with the help of any numerical
computational software. Deriving from eigenvector,
eigenvalue indicates the value by how far the original
vector has been scaled and its value determine the rank of
the eigenvectors in which eigenvector with the higher
eigenvalue is the principal component of the image data.
In MATLAB envomment, princomp is the commeand used
to compute the eigenvector of the mput matrix from its
covariance matrix. As shown in Eq. 6, the output of the
command is a feature matrix, V that contains all principal
component arranged according to the descending order

Table 1: Mean for each dimension (column) in the mean-minus original
image is obtained to form the covariance matrix

X 1 2 n
1 X X1z X
2 Xn Xn Xom
m K1 Kz Konn
Mean of each dimension D, D, Inl

of the Eigenvalues. It is hence suffice to say that the first
column of the V matrix are the eigenvectors having the
highest eigenvalues. p is the number of principal
components selected in the feature matrix (Table 1):

V11 12 le
V, V, ¥

V — :21 :22 ) -ll (6)
an Vnz o Vnp n<p)

PCA deals with transforming the original data, so
that, they are expressed n term of principal components.
In this way, the compressed data, Y can achieve
dimensionality reduction when less principal components
are taken 1nto account in Eq. 7. Eigenvectors are now used
as the basic vectors for transformation:

Y= [ VX Jpum (7

No compression occurs if all principal components
are selected for the transformation. The compression ratio
increase when p reduces. The relationships between the
compressed data and the principal components can be
found n Eq. &:

CR=1-% (8)
mm

It 1s umportant to note that the compressed data itself
cannot visually represent the image without performing
further steps. The compressed data, the feature matrix and
the mean-minus matnx are agan needed to reconstruct the
image, g by performing the mampulation in Eq. 9:

g = (Vx Y) +m (9)

The image quality of the reconstructed image
inherently depends on the principal component and
thereby the compressed data, Y. With the goal of
achieving ligher mmage quality under the same
compression rate, this study proposed a modified
reconstructed scheme for a PCA algorithm (Fig. 1). He fact
that feature matrix 1s one of the factors that contributes to
the image quality in reconstruction initiates the idea
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Fig. 1: Framework for the proposed modified-PCA
algorithm

that employing a different feature matrix in reconstruction
may help to improve image quality. Besides, the
reconstructed image should faithfully represent the
original image in any compression scheme. The new
feature matrix, V., 15 hence, formulated based on the
original image, X as shown in Eq. 10:

V., = (Xm)Y” (10)
The compressed data is now ready to be
reconstructed using V...
Buow ~ (Voo V) m (an
RESULTS AND DISCUSSION

Algorithm implementation and performance testing in
this study was done using MATLAB 201 3a platform on

Fig. 2: The Lena image after gray scale

a Dual Core 2.6 GHz PC. Anuncompressed Lena image in
TIFF format and with a size of 512x512 was used as the
input image as shown in Fig. 2. Except for color to gray
scale conversation no other pre-processing techniques
have been performed on the image.

To evaluate the performance of the proposed
modified-PCA algorithm, it is being compared with the
existing PCA algorithm. The Lena image was compressed
using both methods at an interval scale of compression
rate from 10- 90% and the coding fidelity for both methods
was compared using Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM). PSNR is a
commonly used metric that computes the mean-square
error or similarity level between the compressed image and
the original image. PSNR 13 sumply converted from Mean
Square Error (MSE) where the amount of distortion or
error 18 determined from the difference between the pixels
in the original image X and the output image g. Since, the
image under test is a gray image, the dynamic range . in
Eq. 12 is therefore, 255:

1 1 1
MSE(X, g) =— > ¥ (¥, -g,)* 12)
mI =y 5=
2
PSNR - 10log,, = (13)
MSE

Although, PSNR 1s extensively used mn the literature,
1t 1s not sensitive to structural content in the 1mage. For
this reason to fairly evaluate the performance of the
modified PCA algorithm in addition to PSNR, SSIM 1s
used as a measure of similarity as a combination of three
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factors: the similarity of the luminance 1(X.,g), the
similarity of the contrast ¢(X,g) and the similarity
of the structures s(X,g) (Nowrozian and Hassanpour,
2014):

S8IM(X, g) = (X, gy<c(X, g)xs(X, g) =

2pgp, +C, 2s 48 *+C, W 55, TC, (14)
Hi{+“2+cl S:f(+32g+cz S8, TC,
Where:
u, and p, = The local sample means of X
g.0.ando, = Correlation coefficient of X and g
C,C,andC, = Constants that prevent a mull

denominator

Statistical analysis was performed using SPSS V. 21.0.
The differences in mean PSNR and mean SSIM for PCA
and modified PCA algorithm was estimated using a
Student-t-test. A value of p<0.005 was considered
statistically significant.

As shown n Fig. 3a, b, the proposed modified-PCA
algorithm obtained better PSNR and SSIM than the PCA
algorithm at different compression rate. It can also be
seen from Fig. 4a, b that the mean PSNR and SSIM are
significant higher for images compressed using proposed
method. Image compressed at compression rate of 10, 70
and 90% were shown in Fig. 5 to illustrate the visual
perspective of the compressed images. The full image
collection compressed at every compression rate is
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Fig. 4. Comparison of average fidelity metrics value
obtained for both methods: a) PSNR and b) SSIM.
There were a significant increase in wvalues
(p<0.05)

available by request. At CR = 10%, no visible
distortion were seen on both images except some
barely wvisible vertical line streaks on the 1image
compressed using PCA algorithm. However, at CR = 70%,
there 13 a clear distinction on mmage fidelity where
image algorithm
maintain artifacts-free while image compressed using
PCA algorithm contams visible vertical line streak across
the image due to the lack of information carried by the

compressed using modified-PCA

image. At the highest compression rate done in this study
which is 90%, both images no longer hold their image
integrity as compared to the original Lena image. In
comparisory, although the image compressed by modified-
PCA algorithm does not exhibit visible streak lines as
shown n image compressed by PCA algorithm, it 1s still
generally blurred out and smudge with few horizontal
streaks.
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Fig. 5: Comparison of Lena immage compressed and
reconstructed by both algorithms; a-c) PCA
algonithm at CR = 10, 70 and 90%, respectively;,
d-f) PCA-modified algorithm at CR =10, 70 and 90,
respectively

CONCLUSION

In this study, a new approach to compress image
using PCA 1s considered. The novelty of the method lies
i reconstructing the images using the eigenvectors
derived from the original image. Despite its simplicity and
fast computational process, image compressed by PCA
algorithm often yield undesiwrable image degradation.
Hence, the mam motivation of this study comes from
improving the image quality of the existing PCA method
and as the name suggests, PCA-modified algorithm is
developed based on the basis of PCA algorithm. By using
this PCA-modified method, the compressed image

captures more information about the original image at the
same compression rate as the PCA method. The memory
ratio for the compressed data and the computational time
are the same for both methods.

Two aspects of measuring the coding efficiency for
comparison between the PCA algorithm and proposed
method were used. The performance evaluation by using
these two metrics along with statistical analysis showed
that performance of the proposed modified-PCA algorithm
offers substantial improved performance compared to the
PCA algorithm. Based on the results demonstrated from
this study, further validation can be performed by using
different datasets with comparison to reviewer’s
subjective rating. This may open up the opportunities to
improve medical image compression and face recognition
applications.
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