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Abstract: Pipeline corrosion is one of the most critical and severe cause of pipeline incidents annually. Pipeline
mcidents bring about disastrous damages not only to human but also to the ecosystem and economy of a
country. Pipeline operators are aware of this fact and have deployed a more regular and thorough pipeline
ingpection program through various sensors for data acquisition that can be analyzed to predict the current
state of pipelines. However, there are different factors which cause corrosion and current analytical methods
are not specific enough mn the prediction process. Therefore, a prediction model that 1s able to target specific
corrosion damage mechanisms needs to be developed. Artificial Neural Networks (ANN) have been selected
as the most suitable method to be adopted for such model. A critical study done among existing worl on ANN
has shown the need to improve time efficiency of the method. This project aims to develop a hybrid prediction
Model which can target specific corrosion damage mechanisms. The basic ANN Model will be improved by
mtegrating the Particle Swarm Optimization (PS0O) algorithm to achieve a better and optunal performance. The
final hybrid model will be put to test with a real world industrial dataset to verify its time efficiency as compared
to the basic ANN Model.
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INTRODUCTION

According to the American Petroleum Institute, the
oil and gas industry is one of the largest and most
capital-intensive industries in the world. There are
currently more than tens of millions of kilometers of oil
and gas pipelines being mstalled and used daily across
the globe (Demma et al., 2004; Reber ef al., 2002). Most of
the pipelines in use are made of steel as they deliver the
safest means to transport large quantities of oil and gas
products. Despite the use of msulation on these steel
pipelines, they are still prone to deterioration when
exposed to various damage mechanisms over time
(Reber et al., 2002; Lowe et al., 1998). These damage
mechanisms, 1e., CO, corrosion, cavitation and
sulfidation, eventually lead to corrosion and the pipeline
is subjected to leakages and ruptures, resulting in major
financial losses to the operators and ultimately, pose
substantial Health, Enviromment and Safety (HSE) hazards
to the surrounding ecosystem (Singh and Markeset, 2009,
Hirao and Ogi, 1999). Knowing this fact, operators have
for a long time practiced regular inspection on pipelines to
ensure that they operate smoothly and to minimize the risk
of accidents (Rose, 2004). These inspections male use of

sensors that feed in specific parameters in pipelines and
store them in a database. Prediction methods are used to
predict and momnitor the state of pipelines through the use
of this corrosion data to determine preventive actions to
be taken ahead of a potential incident. Although,
comprehensive measures have been taken throughout the
years, pipelines are still failing and pipeline incidents are
still occurring throughout the globe, bringing about
deadly consequences.

Figure 1 shows the anmual total of oil and gas
pipeline meidents that happened between the years 1996
to 2015 as collected by the Pipeline and Hazardous
Materials Safety Administration (PHMSA) (Anonymous,
2016). Although, there 13 an mntermittent pattern of
increase and decline, it can be seen that the overall trend
of pipeline incidents is increasing. Pipeline incidents
always bring about casualties and it is therefore of
paramount unportance to have a solid and good way to
monitor and predict the state of oil and gas pipelines. A
detailed breakdown of pipeline incidents in the last
recorded year, 2015 is shown in Table 1.

From Table 1, it 1s seen that corrosion has accounted
for 16.9% of the total number of incidents, scoring the
second highest percentage right behind material failures.
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Fig. 1: Count of pipeline incidents from years 1996-2015
(Anonymous, 2016)

Table 1: Breakdown of pipeline incidents by cause in the year 2015
(Department of transportation, 2016)

Cauge Number Percentage Total cost (§)
Excavation 69 99 15,521,210
Corrosion 118 16.9 166,081,880
Incorrect operation 56 8.0 3,749,971
Material failure 208 12.6 55,023,110
Natural forces 45 6.4 15,592,424
Outside forces 49 7.0 18,915,064
Other causes 65 93 48,311,897
Total 700 100.0 323,195,546

Despite being second in terms of percentage caused,
corrosion mcurred the highest total cost as compared to
all other causes, at an economic cost of $166,081,880 in
the year 2015 alone.

According to the US Department of Transportation’s
Research and Special Programs Admimstration, Office
of Pipeline Safety (RSPA/OPS), the percentage of
corrosion-related pipeline incidents averages around a
quarter or 25% of the total global number of mecidents
annually (Anonymous, 2016). During an expert interview
with Staff Corrosion Engmeer from a Malaysian oil and
gas company (ILLC., 2016) he agrees with the statistics,
adding on that m Malaysia, pipeline corrosion is more
severe and accounts for over 35% of pipelne failures and
incidents.

The statistics show that the current corrosion
prediction methods used m the o1l and gas domain have
not yet been able to address the problem of corrosion.
Thus, there is a necessity to develop an improved
prediction model for corrosion that overcomes the gaps
found n the existing methods.

Literature review

Corrosion data: Unlike most industries, the oil and gas
mndustry has for a long time dealt with large quantities of
data to make technical decisions including the monitoring
of pipeline health. The use of ultrasonic waves is the most
popular way to do so. Ultrasonic sensors are installed at
certain sections of pipelines to collect measurements on

the thickness of the pipeline wall to determine the current
corrosion rate (Veiga et al., 2005, Krautkramer and
Krautkramer, 201 3). Besides, various other envirormental
parameters in which the pipeline 1s exposed to are also
collected (TLLC., 2016). Collectively, they can be referred
to as corrosion data and can be fed into algorithms which
predict the rate of corrosion (USDT., 2016).

Despite having an extensive collection of data,
models today are still unable to target specific damage
mechamsms that cause pipeline corrosion. As a result,
current analysis and identification of damage mechanisms
still depend wholly on human experience and knowledge
(Singh and Markeset, 2009, Veiga et al., 2005). The models
today have limited accuracy because relevant parameters
leading to specific damage mechanisms are not targeted
specifically. Besides, some organizations have only
limited knowledge about the real properties of corrosion
and are currently making assumptions about its nature
(USDT., 2016, Supriyatman et al., 201 2).

Hence, the currently available corrosion data mn the
industry have not been fully and extensively utilized due
to the lack of good prediction models. The mferior
analysis provided by current corrosion prediction models
should not be overlooked as the oil and gas industry is
categorized under “high risk™ or “high priority” and even
a little margin of error in the predicted result can lead to
major consequences (Black and Baldwin, 2012).

Corrosion prediction methods: After reviewing and
comparing the existing prediction methods in Table 2
ANN 1s selected to be the method of focus and the model
to be applied for this research. As mentioned in study, the
complex nature of corrosion makes modelling of damage
mechanisms hard and therefore, the ability of ANN to
model complex relationships 1s highly beneficial to the
research. Besides, ANN will also offer flexibility in terms
of the type of predicted output because 1t can be used to
predict various forms of output for the corrosion data. For
instance, it can provide a precise numerical output when
the rate of corrosion needs to be predicted, a classifier
output when the severity of corrosion needs to be
predicted and finally a probabilistic output when the
probability of comrosion or faillure needs to be
predicted.

The dependence of this project on reliable input data
should not be of concemn as the dataset for this project
will be obtained from a Malaysian oil and gas company
and Universiti Teknologi PETRONAS (UTP)’s Centre of
Corrosion. Therefore, ANN which performs the best with
a reliable dataset is suitable to be used. However, the
ANN Model will need to be backed up using several other
optimization techmques or algorithms in order to
overcome its disadvantages in terms of long training time
and poor time efficiency.
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Table 2: Comparison between existing prediction methods in the oil and gas domain

Prediction model _ Fault tree analysis

Mechanistic model

Artificial neural network

Reliability on data Tow High
Training time Low Very high
Accuracy High Very high
Advantages Uses knowledge of expert human

operators

Disadvantages

the fault tree

It is the result of thorough and
comprehensive experimentation

High

High

Very high

Capable of representing complex forms of
relationships

Good to represent non-linear relationships
Flexible

Limitations of the human knowledge Requires understanding of the underlying chemical, Dependent on reliable input data
A long time may be needed to design  electrochemical and transport processes
A long time is needed to produce

T.ong training time
Long training time/low efficiency

a reliable model for a single DM

Table 3: Comparison between existing works on ANN

Gaps found

Suggested fiture work

Researchers Type of predicted output
Suprivatman et of. (2012)  Numerical
Long training time/low time efficiency
Ren et ad. (2012) Numerical
Sinha and Pandey (2012) Probability

Long training time/low time efficiency

Relection of topology is done manually

To have a better research that identifies
the related parameters

Relection of topology is done manually --
Selection of topology is done manually

Reduce training time

Table 3 shows the comparison between three existing
works on the ANN Model for prediction i o1l and gas
domains. A recent research by Supriyatman et al. (2012)
and Ren et al. (2012) has proven that ANN is a suitable
model to be implemented in the o1l and gas domain as it
demonstrates a high accuracy m predicting complex
relationships. The result of this research is also supported
by Ren et al. (2012), Sinha and Pandey (2002) whose
researches have proven that non-linearity in the variables
used in thewr experiments are accurately represented by
ANN.

From the papers studied, all three researches
Supriyatman ef al. (2012), Ren ef af. (2012), Smha and
Pandey (2002) state that the selection of neural network
topology iz done manually. Another problem is the long
traming time or low time efficiency of the ANN Model
(Supriyatman et al., 201 2; Sinha and Pandey, 2002). ANNs
have a long traming time due its nature of learning from
historical dataset. As the number of training epochs is
increased, the error of the network decreases, the
accuracy of prediction increases but at the cost of a
longer training time.

Both of the problems show an area in the ANN that
can be improved. A study by Koehn (1994) has shown
that different network topologies affect how fast the
network learns.

Figure 2 shows how different topologies achieve
different error rates after a certain number of epochs. Each
of the 4 lines represents a unique topology and from
(Fig. 2), 1t can be seen that the 5-node fully comected
topology achieves lower error rates at the same number of
epochs when compared to the other 3 topologies. Since,
different topologies achieve a mmmimum error rate at
different number of epochs, it means the time needed to

0.6 —+— 6 node fully connected
—a— 5 node fully connected
0.5 —— 3-3-1 incl. bias unit

= 2.5.1 layered

Average network error
o
w
L

0.2+
0.1+
0 L] T T T
1000 2000 5000 10000 20000 10000
Number of Epoch E
Fig. 2: The comparison between different network
topologies with the average network error

achieved (Koehn, 1994)

train the models varies as well. Thus, it 1s possible to
implement a form of selection or optimization algorithm
that is able to perform selection of an optimal network
topology using ANN as the fitness function instead of a
mamial selection (Koehn, 1994).

The researchers have also proposed several
suggestions for future research such as to have a better
research that identifies the related parameters to be fed
into the neural network (Supriyatman ef af., 2012) and to
reduce the traming time needed (Sinha and Pandey, 2002).
The first suggestion to identify the related input
parameters matches the motivation for this research,
which 1s to target specific damage mechanism by focusing
on the rnight parameters that relate to them. The second
suggestion to reduce the traming time can be addressed
by implementing the optimization algorithm to select an
optimal ANN topology.
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Table 4: Comparison between GA and PRO
Parameters GA PSSO

Ability to reach good solution without local search ~ Lower Higher
Influence of optimal solution on population Lower Higher
Continuity of search space Lower Higher

Influence of population size on solution time Exponential Linear

Different optimization algorithms will have to be
compared to identify which one to be mmplemented to
optimize the basic ANN Model. Optimization, in this
research will refer to the improvement in time efficiency of
the model. It will be represented by the tume taken to train
the ANN to reach a certamn level of prediction accuracy.
The longer the time taken to train the ANN, the lower its
time efficiency.

Optimization algorithms: The two most commonly used
optimization algorithms, Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) have been studied. The
results of the comparison between the two algorithms are
shown in Table 4.

Based on Table 4, by Kachitvichyamuikul (2012) it can
be seen that PSO outperforms GA in these four
parameters: ability to reach good solution without local
search, influence of optimal solution on population,
continuity of search space and influence of population
size on the solution time which are relevant to this
research. Firstly, PSO has a lugher ability to reach a good
solution without performing local search, unlike the GA,
thus lowering the time needed for the search. This is due
to the lower continuity of search space in GA which may
render 1t incapable of producing all potential solutions in
the search space.

Furthermore in PSO, the optimal solution has a higher
mfluence on the population as compared to GA. For
simpler optimization problems such as the ANN topology,
this helps to save searching time as the subsequent
iterations will revolve around the optimal solution found.

Another research proved that the PSO exhibited
computational efficiency superiority over the GA with a
99% confidence level (Hassan et ai., 2005). This has
shown to be in line with the results obtained by
Kachitvichyanulul (Kachitvichyanulaul, 2012) because the
mfluence of population size on the solution time is
exponential in GA as compared to P3O. Hence, the time
taken by GA will always be longer and might not be
suitable for this project where time efficiency is a factor
that needs to be unproved.

Novelty of research: From the literature study of existing
methods and researches, the novelty for this research is
twofold. Firstly, there are no existing prediction models
that are able to target specific damage mechanisms that
affect pipeline corrosion and existing methods make their

prediction without regards to these damage mechanisms.
Secondly, T will be establishing a novel algorithm that
optimizes both ANN topology selection and also ANN
traiming, to improve time efficiency of the whole model.

Problem statements: There are problems with existing
prediction medels for pipeline corrosion m the sense that
they are not yet able to target thewr prediction towards
specific damage mechanisms that cause corrosion. The
current models are generalized models that target the
entire corrosion data as a whole. By having a specific
instead of generalized prediction, the prediction shall have
a higher accuracy and confidence level. Besides, the ANN
models that have been developed for corrosion in oil and
gas pipelines have a low time efficiency and this can be
improved by optimizing the network topology for the
ANN model to have a shorter training time. The following
Research Questions (RQ) are extracted from the research
problems:

¢+ [RQ1]; What are the parameters that are relevant to
the damage mechanisms focused in this research?

» [RQ2]; How can a hybrnid prediction model be
developed by leveraging on PSO to optimize the
ANN model?

¢+ [RQ3]; How will the proposed hybrid model be able
to achieve a lugher time efficiency?

Objectives: The following objectives are outlined to
address the research problems:

»  To conduct a critical study on damage mechanisms
for pipeline corrosion and thus identify the
parameters that are related to the focused damage
mechanisms

»  Todevelopa hybrid prediction model based on ANN
and optimized using PSO

»  To evaluate the performance of the proposed hybrid
model to achieve a higher time efficiency

MATERIALS AND METHODS

Research methodology: Figure 3 shows the methodology
for this project. Firstly, the obtamned corrosion dataset
will be pre-processed to suit the ANN Model. Under
data-preprocessing, the corrosion data 1s first normalized
and then segregated into training data and validation
data. The traiming data will be used to tram the ANN,
while the validation data is used to wvalidate the
performance of the ANN. These data will then be fed into
the Particle Swarm Optimization, using Artificial Neural
Network (ANN) tramning time as the fitness function, to
select an optimized ANN topology. An optimized ANN
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Fig. 3: The flow of research methodology

topology refers to a topology that exhibits a higher time
efficiency compared to a topology that 13 selected
manually. The ANN will be imitialized using the optimized
topology along with other ANN parameters.

The optimized ANN Model will be trained using the
same training data until a certain condition is met. Early
stopping, a method to prevent the network from
overfitting will be used by stopping the training once the
network error recorded is higher than its previous reading,.
Once successfully trained, the ANN will be validated
agamst the validation data to determine its time efficiency.
The final outcome will be the hybrid prediction model that
1s able to target specific damage mechamsms for pipeline
COITOSIONL,

Proof of concept

Data preparation: The synthetic dataset has been
obtained through a literature survey (Tong, 2015; Ossai,
2012; Papavinasam et al., 2013) and has been verified by
a Staff and Senior Corrosion Expert (USDT., 201 6; TLLC,
2016) to fulfil actual industry standards and validated for
use 1n this proof of concept. The dataset synthesizes 300
rows of cross-sectional data, obtained from sensors
attached to different points on different pipelines, at the
same point in time as shown n Fig. 4. Cross-sectional data
refers to widely dispersed data relating to one period of
time or without respect to variance due to time.

Figure 5 shows some sample rows of the synthetic
dataset. The dataset is a supervised dataset and
comprises of pairs of input as well as the output. Each row
of the data consists of 3 input parameters: CO, partial
pressure (MPa), flow velocity (im/sec), temperature (°C)
and a classifier output that classifies the severity of
corrosion, either it 1s within: “Acceptable” range,
“Normal” range or severe “Corrosion™. The relationship

Pipeline 1

Pipeline 1

—"
. = Pipelinen

Fig. 4: The synthetic data synthesizes data collected from
different pomts from different pipeline at certain
point n time (Tong, 2015)

.3661,2.8272,62.8546,corrosion.
.1368,2.9751,46.6364,normal.
LAA72,1.2772,48.6372,acceptable.
.3175,2.2537,64.8342,corrosion.
.8732,3.1334,45.7246,normal.
.5128,1.1260,47.9586,acceptable.
.3783,1.8825,66.2243 ,corrosion.
.1179,2.8188,51.8876,normal.
.4992,1.1158,53.3868,acceptable.
.3417,2.81832,61.9454, corrosion.
.1168,3.1569,47 8357, normal.
.4613,1.1931,52.2789,acceptable.
.2614,1.8844,64.3888, corrosion.
.0893,3.3629,47.2793,normal.
.4138,1.56823,49.8257,acceptable.
.5837,2.1382,65.4294, corrosion.

0000000000000

Fig. 5: Some sample rows of the synthetic dataset (Tong,
2015)

between the mputs and outputs are non-linear and

represent the actual nature of comrosion in subsea

pipelines (Tong, 2015).

Assessment model: Figure 6 shows the immtial ANN model
developed for the proof of concept. It 1s a feed-forward
Multi-Layered Perceptron (MLP) which is trained using
Back-Propagation (BP). The model comprises of an input
layer with 3 nodes a hidden layer with 3 nodes and also an
output layer with 3 nodes. Each node in every layer is
connected to every node in the following layer, creating
a topology with 18 connections or weights. Table 5 shows
the parameters of the ANN Model and justifies the
reasoming belhind the mitialized values.
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Table 5: Initial parameters, values and justifications

Table 6: Results obtained for the proof of concept

Parameters Values Justification Variables Values
Input nodes 3 The data contains 3 predictors No. of epochs 50 500 1,500
Output nodes 3 The output has 3 possible outcomes Total ne. of training data 31,500 315,000 945,000
Hidden nodes 3 Based on literature study Total no. of validation data 270 270 270
Hidden layers 1 Based on literature study No. of correct prediction 189 263 266
Initial weights Between 0-1 Based on literature study No. of wrong prediction 81 7 4
Learning rate 0.2 Based on literature study Accuracy of prediction 70.00%% 97.41% 98.52%
Average training time 1.98 sec 21.33 sec 63.27 sec

Objectives: The objectives of this proof of concept are: .

Input layer Hidden layer Output layer

¢ To prove the ability of ANN to map non-linear
relationships in pipeline corrosion data by obtaining
a high accuracy m prediction

¢+ To prove that ANN is able to improve its prediction
accuracy by trading off its time efficiency

Procedures: The procedures mvolved in this proof of
concept are the synthetic data set 1s first normalized mto
values between O and 1. The normalized data is divided
into training set and validation set in the ratio of 7:3. The
traiming set thus contains 210 rows of data per epoch
while the validation set contains 90 rows of validation
data. The training and validation sets are sampled in 3 in
different ways. Set A is sampled from the beginning of the
dataset, set B from the end of the dataset and set C from
the middle of the dataset. This cross-validation reduces
bias in the results and improves confidence in the model.
The ANN 1s tramned thrice on each data set, with 50
epochs, 500 epochs and finally 1,500 epochs. The 50, 500
and 1,500 are arbitrary values used to represent low
amount of training, medium amount of training and high
amount of training. The average accuracy of classifying
prediction and also average tramming time for the 3 tests
with 50, 500 and 1,500 epochs are recorded.

RESULTS AND DISCUSSION

Table 6 shows the results obtamed for the 3 tests
with 50, 500 and 1,500 epoch. From the table, it can be
seen that the average accuracies of the model at 50, 500
and 1,500 epochs are 70.00, 97.41 and 98.52% respectively.
On the other hand, time taken for the traimng are recorded
at1.98, 21.33 and 63.27 sec, respectively. A graphical view
of the tabulated result will be shown in Fig. 7.

From Fig. 7 it can be seen that the ANN 13 successful
at producing predictions of a lngh accuracy on non-linear
corrosion data that was validated by Corrosion Engineers
from a Malaysian oil and gas company. After 1,500
epochs of traiming, the prediction accuracy of the model
has reached 98.52%. The prediction accuracy 1s very high
and has met the first objective of this proof of concept
which is to prove the ability of ANN in mapping out
non-linear relationships in pipeline corrosion data. This 1s

Fig. 6: ANN model used for the proof of concept

crucial because the ANN will be used on actual industrial
data which also exhibits non-linearity and a high
prediction accuracy proves that ANN is a feasible model
to be used in this research.

It can also be seen that the traming time increases
linearly as the number of epochs increases. Since, the
training time represents time efficiency in this research it
can be said that time efficiency decreases linearly as the
number of epochs 1s mcreased. Besides we can see that
the prediction accuracy of the model increases
loganthmically as the epochs are increased. A
logarithmical growth is depicted by a growth that starts
off rapidly, followed by slowed growth that continues to
increase at a low rate.

Hence, from Fig. 7 it can be concluded that as the
prediction accuracy of ANN increases, the time efficiency
decreases. This fact has met the second objective of this
proof of concept which 1s to prove that ANN 1s able to
improve its prediction accuracy by trading off its time
efficiency. Although, it may seem that the training time of
ANN is not significant from the results of the proof, it is
important to note that the size of the synthetic data 1s
much smaller than an actual mdustrial dataset. In an actual
industrial dataset, every epoch will take up more data
which translates to an increased training time ((TLLC,
2016).
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Fig. 7: Graph showing the increase in prediction accuracy
and training time as the number of epochs
increases

Thus, the proposed methodology i study to have
an optimization for the neural network topology using
PSO to improve its time efficiency is strongly supported.
The logarithmic growth shown by the mcrease in
prediction accuracy justifies the reason to optimize the
network because the slower increase in prediction
accuracy at later stages of training will take up more
traimng time when trying to tramn the ANN to an intended
level of accuracy.

Therefore, the hypothesis of this research is PSO can
be used to find an optimal network topology that learns
faster by using capitalizing on the early rapid growth of
the loganthmic curve. In this way, only a little time will be
spent on the PSO while saving up more time on the actual
training of the ANN (Swarm Intelligence, 2015).

CONCLUSION

This review study has studied problems relating to
the severity of pipeline corrosion and current prediction
models. The pros and cons of several famous models
used in the prediction of corrosion in the oil and gas
domain were presented. ANN is chosen as the model to
be adopted and to be unproved in this research. However,
the gaps of the ANN Model, 1.e., the manual selection of
network topology and the long training time resulting in
poor time efficiency need to be addressed in later stages
of research. It was discussed how optimizing the neural
topology may help to solve the stated problems. Through
critical study, PSO has been chosen as the potential
optimization algorithm to be used to select an optimized
ANN topology.

The novelty of this project have been identified via
the literature study and several research questions have
been determined. Objectives for this research have been
detailed as: to conduct a critical study on damage
mechamsms for pipeline corrosion and thus identify the

parameters that are related to the focused damage
mechanisms, to develop a hybrid prediction model based
on ANN and optimized using P3O and to evaluate the
performance of the proposed hybrid model to achieve a
higher time efficiency

An initial proof of concept was conducted to prove
the feasibility of ANN to be used in tlis research. The
combined results from the proof and literature study have
shown that an optimized topology would allow the model
to be trained faster while at the same time, provide an
accurate prediction related to the state of pipelnes. It 1s
also equally important to target the right parameters that
relate to specific damage mechanisms. With the right
parameters and input, the ANN will be able to make
predictions of a higher accuracy and confidence level.

This next phase of research work will consist of
optimizing the ANN model using PSO and identifying the
right way to apply PSO to select a network topology
which increases time efficiency of the ANN. Finally then,
the proposed hybrid model can be put to traming
with the industrial data set to develop a prediction model
that could be highly beneficial to the oil and gas
industry.
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