Tournal of Engineering and Applied Sciences 13 (Special Issue 3): 3261-3266, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Improvement of Android Banking Application Integrity Using Dynamic Key Value

Ji-ho Cho, Chung-hyun Lim, Hyo-jung Ahn and Geuk Lee
Department of Computer Engineering, Hannam University, Dae-Jeon, Republic of Korea

Abstract: As the number of smartphone user increase rapidly over the recent several years, numerous android
applications are developed. In the android market, due to the openness of the market, the distribution of not
only normal applications but also, malicious applications disguised as normal applications are increasing.

Malicious financial applications disguise themselves as normal applications to steal personal information,
account passwords and security card information and attempt illegal transactions. Malicious banking

applications easily evade integrity verification and are transformed into another malicious applications using
repackaging method Banking applications require very rigid mtegrity verification method. In this study,
mtegrity evasion methods of android banking application are mtroduced and a verification method using
dynamic key values to prevent the integrity evasion attack is proposed. Application program’s memory load

address is used as dynamic key value.

Key words: Android banking App., mtegrity verification, dynamic key value, evasion methods, banking

application, dyvnamic key value

INTRODUCTION

The number of mobile banking customers in
South Korea 1s 71.92 million as of March, 2016 which was
smaller by 6.1% (-4.64 million) compared to the end of the
previous quarter (76.56 million). This 1s attributable to the
fact that the number of registered customers decreased
drastically compared to the end of the previous quarter
(-7.85 mullion). Since, the banking service based on IC chip
and based on VM that had been used in feature phones
from the begimming of mobile banking service was
terminated at the end of 201 5. Meanwhile, the number of
registered customers who were using smartphone based
mobile banking service was 68 million. It 15 increased by
5.0% (+3.21 million) compared to the end of the previous
quarter and has been mamtaming a steady mcreasing
trend (Jung-Hyuk, 2015).

Normal Apps. (applications) can be transformed mto
similar malicious Apps. using a technology called
repackaging. Repackaging is a process through which
Apps. are mverse transformed into their imtial forms.
New Apps. are made by revising the initial form and
mserting some new source codes into the initial form.
Anyone who has some knowledge and understanding of
Java language can manipulate App. easily using
repackaging technology. After repackaging was found
for the first time in 2011, the distribution of repackaging
Apps. rapidly mereased in diverse paths such as Google

Android market, third party markets and P2P. A problem
of repackaging Apps. is that these Apps. disguise user as
it is normal Apps. to steal various kinds of information
related to individuals. Therefore, the safety verification
function of banking Apps. is important (Seon-Mi,
2012).

MATERIALS AND METHODS

Analysis tools and techniques

Analysis procedure: The analysis procedure to analyze
the vulnerabilities of applications program in the android
operating system is as shown in Fig. 1. APK files are
unpacked using the apk tool to create a native library.
This library is disassembled using android NDK’s
arm-linux-androideabi-objdump to analyze the assembly
code. In addition, character strings can be analyzed using
Liux’s string commands. Modified APKs can be made by
iserting debug logs mnto the smali codes and repackaging
the smali codes using the apktool. These modified codes
can be mstalled and executed m android devices to
conduct execution log analysis and memory dump file
analysis. The classes.dex files created after
decompressing APK files are converted into JAR
(Tava archive) format. After the conversion, the files are
converted mto Java source codes using the sublime text
2 decompile tool to analyze the source codes (Kim et al.,

2013).

Corresponding Author: Geuk Lee, Department of Computer Engineering, Hannam University, Dae-Jeon, Republic of Korea
3261

J. Eng. Applied Sci., 13 (Special Issue 3): 3261-3266, 2018

APKiool Zip
unpack decompression
[[E-Ihmr Ev];] [Smali code
Ingert log in smali code AI::’]Z:: gﬁ:"ﬂ
APK tool
¥ repackaging [Classes_dex2jarjar]
[Modifiedark |
Arm-linx- Install and execution
androideabi-
objdump, strings | ¥ Java source code
Runtime log analysi
Assembly code analysis, tem cafl :Ece 5
character string analysis s » DTy
dump analysis
Fig. 1: Analysis procedure of android application
: Siged
B
nary APK APK
Decompile Unpacking
Compile Packaging Code sign
Modified Signed
source APK
Repackaging

Fig. 2: APK unpacking and repackaging process

APK file unpacking and repackaging: Android Apps.
can be effectively used by unpacking APK files, analyzing
or revising the contents and repackaging the APK files.
APK files are unpacked and repackaged using the apltool
which is an android APK file reverse engineering tool.
Apps. can be forged or falsified in this process.

When APK files are unpacked using the apktool, files
and directories are extracted and a smali directory
containing files created by disassembling android dex
format 1s additionally created. The extracted directories
and files are repackaged using the apktool and cen be
made into APK files that can be installed into the android
operating system by signing using the jarsigner tool
mcluded m the Java SDK. Figure 2 shows the APK
unpacking and repackaging process (Seon-Mi, 2012).

Java class decompile and source code analysis: APK files
are n a ZIP compressed file format based on JAR
(Java ARchive) file format. Therefore, the classes.dex files

of APK files can be obtained by changing the extension
name of APK files into ZIP and decompressing the files.
classes.dex files can be converted into JAR files with
simple command and the dex 2 jar program. Since, JAR
files include Tava class files, TAR files can be decompiled
using Java decompiling tools such as sublime text 2. JAR
files can be compiled agam after conducting static
analysis or revising the source codes on the source code
level (Anonymous, 2010).

Where the parameter ¢ 1s called embedding intensity
and their effect of validity of the algorithm directly 1s
apply after this process, after that apply the inverse
wavelet transform to the image for find out watermark
image (Fig. 3).

Memory dump analysis: In the android operating system,
the heap memory of the executing App. can be dumped.
To create memory heap dump, first an android studio 1s
installed and an android emulator or mobile phone 1s

3262

J. Eng. Applied Sci., 13 (Special Issue 3): 3261-3266, 2018

MainActivity.smali

.class public Lcom/mwr/dz/activities/MainActivity;
.super Landroid/app/Activity;
.source "MainActivity.java"

instance fields

.field private endpoint_list_view

m/mwr/dz/views/EndpointlistView;

.field private server_list_row_view:Lcom/mer/dz/views/ServerListRowView;

direct methods

.method public constructor <init>()V

.locals 1

.prologue
const/4 vo, 0x01234567

Fig. 3: Decompiled Java class using sublime text 2

Peshioph ey hpror - Android Swaro 22 T bl

(ze Refactor Buld Run Tooks VCS Window Help

L Y

& > A

|2 app -
16.10.05 11.44-1.bxt

[t my.hprof x

| Default heap = | | Class List View =

Class Name Total .Heap .| Sizeofshallo. | Retai... =
€ FinalizerReference (java lang ref 428 428 36 15408 325900¢
© string (java.lang 13562 13562 24 325481740842
© byte]] 1604 1604 O 63640) 636407
@ charl 11986 11986 0 56259562592
€ HashMap$HashMapEntryl] zva utll 92 92 0 49320 281011
€ HashMap$HashMapEntry (java util 4587 4587 24 11008¢ 277658
© HashMap (ava.util 85 85 48 4080 273723
© Bitmap (ar 31 31 52 1612 158092
© LongsparseAray[] (3 1 10 8 156244
© NinePatch (andro 30 30 24 720 149532
@ int] 2320 2320 O 13992(139920
© LinkedHashMap (j2 24 24 56 1344 128606
@ HTMLSchema (org ccil cowan 1 1 28 28 116300
€ LinkedHashMap$Linkedzntry 817 817 32 26144 115618
© Objectf] (ava.lang 337 337 0 17560 89337
© TimeZoneNames§ ZoneStringsCache (lib 1 1 20 20 81310
© BouncyCastleprovider (com.android | 1 1 112 112 77868
© stringl (a 2049 2043 0 59468 71020
£ SarseAray 2121 24 504 55222

Reference Tree
Fig. 4: Classes and instances of dump files

connected to the android studio. Next, the menu named
android monitor in the android studio 13 executed. The
memory usage of the executing App. can be seen by
comnecting the android studio and the App. player. In
addition, dump files are created by pressing memory
snapshot and dump file buttons in the android momnitor.
Figure 4 shows a snapshot and dump files (Anonmymous,
2015).

RESULTS AND DISCUSSION

Banking App. integrity evasion: When normally
distributed android Apps. are forged and repackaged, the

Instance Depthshallow..] Domin.
1) 0 = [char[212]@2499271648 (0x9417dbe)} 3 424 424
' Char[4]@2499096216 (0x94{52e98)} 1 3 H]
1 2 = [char[6]@2500148848 (0x95053e70)) 12
£ 3 = {char[1]@2498125496 (0x94e656b8)} 1 2 2
' char(5]@2499008520 (0x943d308)) 1 10 10
B 5 = (char[43]@2500210200 (0x95062¢18)) 26
1) 6 = {charl4]@2498043616 (0x94e51ee0)} 1 E 8
117 = (char[23]@2498306776 (0x04292248)) 1 26 18
1) 8 = [char[52]@2407950048 (0x94e3b160)) 6 104 104
£ 9 = (char[21]@2497605040 (0x94de6db0)} 1 a2 42
1110 = {char[39]@2497973432 (0x94e40chE)] 1 78 78
£ 11 = {char{6]@2498920832 (0x24126180)} 1 12 12
1112 = [char[4]@2499350432 (0x041932¢8)) 1 s 8
I 13 = {char[20]@2498745400 (0x04efd438)} i 58 58
1) 14 = {char[58]@2498739424 (0xG4efbcel)t 1 116 116
1) 15 = {char[4]@2499036320 (0x04752f00)} 1 s e
1 16 = {char[7]@2497955984 (0x94e3¢830)} i 14 14
© 17 = {char[71@2498043704 (0x94e51138)) 1 14 14
1118 = Ichar181@2500148976 (0x95053¢f0) 1 36 26

Dep..| Shallow ..Deminati

contents of forged APK files is changed to be different
from the original cnes. To detect tlus change, the hash
value of the APK file of the executing App. in the
smartphone 1s calculated, encrypted and transmitted to
the server. The server compares the received hash value
and the hash value of the original APK file stored in the
server to verify the integrity of the App.

Every time an App. 18 executed, android loads the
Tava code included in the APK file into the Dalvik virtual
machine. The path of the loaded APK file can be
obtained from the App. being executed through the
getPackageCodePath() or getApplicationlnfo() method of
the android content. Context class.

3263

J. Eng. Applied Sci., 13 (Special Issue 3): 3261-3266, 2018

Table 1: APK path evasion

Normal banking App.

APK path evasion method

The APK path is obtained from the Java code and transferred as
arguments of the native finction

Call getPackageCodePath() method from the native code

Call getApplicationlnfo() method of from the native code

The path value is changed in the Java code before it is transferred as arguments

Change the return value by method overriding of the getPackageCodePath()
Change the retum value by method overriding of the getApplicationTntfo()

©Request random

number
<
S 4 @ Random number Malicius
erver @H, backing App.
"~ @ Verification result
(normal)

/ Malicius backing App. \

Dalivik virtual Origine APK file
machine

®R, Check ©File read

activity

)
Native string
getAPKHash() L. ®H,

J 'S

Native library

)

@ Override @Request _
H, = E; (hash

gvetPackageCodPath() 3 APK path ®(AAPK||}|\{§) as!

{rturn original

APK path;}
K = Session ky

N\ —
Fig. 5. Evasion of integrity verification

®APK path _|
7

To evade the mtegrity verification, forged App. need
PAK path of original APK file. The forged App. includes
the normally distributed original APK file in the forged
App. Through smali code modification and repackaging,
the forged APK file path used in the integrity verification
is to be the APK file path of included original one. The
original APK file 1s added to the assets directory of the
forged App. The forged App. copies the original APK file
n its data directory when 1t 1s executed (Fig. 5).

If the original banking App. used a method that
obtains the path of the APK file from the Java code and
transfer the path as arguments when call the native library
function, the value can be changed very easily in the
Java code of the forged App. Summary and comparison
with normal App. of this attack is in Table 1 (Kim et al.,
2013).

Prevention methods
Dynamic loading of Java code: To cope with the banking
App. vulnerability of mtegrity verification explained in
previous chapter, dynamic loading method of Java code
is proposed (Kim et al., 2013). The process is shown in
Fig. 6.

First, the file named a.dex necessary for integrity
verification 1s stored n the server. This file 1s encrypted
using session key K. The file is transmitted to the android

Server OR. EK (a, dex) Android App.
il @F, (H,), Ex (Hy)
< k (M), By (Hy
\®Veriﬁcation result
©OHA, HB verification (norma)

/ Android App. \

[Dalvik virtual \ (\

machine

@R, E; (a, dex)
>(®DK (a, dex)

Native string @HB = Hash (a,dex|R)

get APK Hash() | JOE(H,), E(H,
— |

®Load (a,dex)

dynamic loding

®request APK
module .
H, = E;(hash(APK||R)
@APK path_|

rd

A, class .
\\;/ / \ K =Session key)

Fig. 6: Dynamic loading of Java code

App. together with the random number R. The session
key K value is a symmetric key value for encryption and
decryption of transmitted/received data. This value is
exchanged by the banking App. and the server when the
user session begins. All existing banking Apps. have
session key K because they provide the encryption of
transmitted/received data. After decrypting the a.dex
using session key K, the android App. calculate the hash
values of the a.dex and R value to obtain the ntegrity
verification value H,. The a.dex is loaded into the Dalvik
virtual machine. The APK path is requested by the
dynamic loading module Table 2. Next, apply the hash on
the APK path and the random number in order to create
integrity verification value H,. In the final stage, integrity
verification hash values H, and Hp are separately
encrypted using session key K to make E.(H,) and E.(H;)
and these values are transmitted to the server. The server
verifies the integrity of the banking App. and the a.dex file
with the dynamic loading. Detail of this method is
explained m the reference number 4.

In the Java code dynamic loading method, the server
transmits the a.dex file to the App. An a.dex file is usually
1~4 MB in size. Whenever the user just press the App.
execution butten, an amount of data of 1-4 MB 1s
used. In addition, the APK path 15 requested 1n step in
Fig. 6.

3264

J. Eng. Applied Sci., 13 (Special Issue 3): 3261-3266, 2018

Table 2: Strengths of the Java code dynamic load technique

Table 3: Weaknesses of the Java code dynamic load technique

Solution of Java

code dynamic loading
A.dex Java code

is dynamically

Problem of banking Apps.
Vulnerabilities in
verification using the

Strength
Method overriding
vulnerabilities are

APK path loaded resolved

)

a .

DRendom number S Android App.

@E,(LoadedAPK),

®Dy(LoadedAPK) [& B
H, verification ®verification result

—

/ Abdriod App. \
{ Dalvik virtual "\ (Native library \
machine
@R N
I®EK (loadedAPK
EKH,)
®LoadedAPK
request memery
load address
loadedAPK. @LoadedAPK | s
detclassloader() return memory | — hash(loadedAPK||R),
load adderess EK(loaded APK)
Cd

N

Fig. 7: Integrity verification method using dynamic key
value

Since, the APK path once installed 1s invariably stored at
the same position, APK path could be known to the
hacker m several ways.

Integrity verification using dynamic key value
Dynamic key value technique: When an application 1s
executed, the loading address of the program is changed
whenever it is loaded in the main memory. We proposes
a method that uses the memory address as a key value
that is changed in dynamic.

The integrity verification method using the dynamic
memory load address when an application is executed is
as shown in Fig. 7. First, the android App. requests the
server for the random number R and receives it. This
random number R value is sent to the library. Next, the
Android App. executes the T.oadedAPK getClassToader()
function to receive the memory address of Loaded APK
class as a key value. The native library calculates H, value
using the hash values of the Loaded APK and the random
number R. The LoadedAPK value and the H, value are
separately encrypted into session key K values to
transmit E.(H,) and E (Loaded APK) to the server. The
server decrypts E(H,), El(LoadedAPK) received from the
App. The decrypted D(L.oadedAPK) and random number

Category Weakness

a.dex file 1~4 MB of data is consumed due to a.dex file
transmission when the App. is executed
a.dex should be encrypted and decrypted

APK path The path is not changed once the APK file is stored

Table 4: Improverments of the proposed method

ynamic loading of code Proposed method Improvements
Transmit the Java code Use aload address No a.dex file encryption
to prevent the vulnerability as the key value and decryption process
of method override Less data and time are
consumed
No dynamic loading
module is used

R value are hashed. The verification result is send to the
android App. to complete the verification. Figure 7 shows
this process.

The evasion attack can be prevented using the
method shown in Fig. 7. In addition, the method
consumes less data space than the method using the
loading module of Java. It also consumes less time
because it need not encryption and decryption process of
the a.dex file.

Comparison with dynamic loading of code: Whereas, the
techniques use dynamic loading modules to make the
Tava code to be dynamically executed, the technique
proposed in the study does not use any dynamic loading
module but does use the dynamic key value for
verification (Table 3).

When a dynamic loading module is used, the a.dex
file should be received from the server and should be
decrypted. And the random number R and hash value of
a.dex are used to calculate H and H is encrypted.
However, since, the proposed method need not use
dynamic loading module, the processes to encrypt and
decrypt a.dex file were skipped. Dynamic code loading
method needs some data communication since the a.dex
file should be received every time the application is
executed to enable the vernification. The proposed method
enables verification without the receiving/sending the
a.dex file making verification fast and simple (Table 4).

CONCLUSION

In this study, first, we analyze vulnerabilities of the
android banking App. integrity verification function.
Second, we introduce a dynamic loading method of JTava
code to prevent the evasion attack of integrity
verification. Third, dynamic key value method 1s
proposed. The dynamic key method uses the memory
address that can be obtained 1 loadAPK class as the key
value. This value is loaded address of application program
and it varies whenever it loaded.

3265

J. Eng. Applied Sci., 13 (Special Issue 3): 3261-3266, 2018

In the dynamic loading method of Java code, the
a.dex file is loaded dynamically. In this process, the a.dex
file 1s received from the server, encrypted and decrypted.
The method proposed In the study does not uses the
dynamic loading module but uses the dynamic key value.
Therefore, less data space is needed and the a.dex file
send/receive with the server is not need and the
processes to encrypt and decrypt the a.dex file was also
skipped. The proposed dynamic key value method is more
convenient and simple than that of dynamic loading

module method.
RECOMMENDATIONS

More studies are needed m ntegrity assurance areas
to improve integrity verification of application programs
and to cope with the new attacking technologies on the
integrity verification.

ACKNOWLEDGEMENT

This research was supported by 2017 Hannam
University Research Fund.

REFERENCES

Anonmymous, 2015. [How to use NEXT android profiler].
LinkedIn Corporation, Sunnyvale, California, TSA.
(Tn Korean) https://www.slideshare net/arload/next-
android-profiler.

Anonymous, 2016. Android (operating system). https:
Hko.wikipedia.org/wiki/Android(operating_system),
%E2%80%9Candroid(operating_system)%0E2%80%
aD.

Jung-Hyuk, K., 2015. The present situation of use of
domestic Internet banking services m the third
quarter of 2015. Bank of Korea, Washington, DC.,
USA.

Kim, 3., 5. Kim and D.H. Lee, 2013. A study on the
vulnerability of mtegrity verificaton functions of
android-based smartphone banking applications. J.
Korea Inst. Inf. Secur. Cryptology, 23: 743-755.

Seon-Mi, G., 2012. Thieves that secretely stealed into
smartphone. AlmlLab, Inc., Gyeonggi Province, South
Korea. http://www.ahnlab.com/ki/site/securityinfo/
secunews/secuNewsView.do?seq=19986.

3266

	3261-3266_Page_1
	3261-3266_Page_2
	3261-3266_Page_3
	3261-3266_Page_4
	3261-3266_Page_5
	3261-3266_Page_6

