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Precise Long-Term Prediction of Behavior in a 3-D Chaotic Map
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Abstract: In this study, the prediction accuracy on long-term of future behavior in a 3-D chaotic map is
possible. This study introduces and justifies by numerical simulation a new phenomenon shown by the 3-D
map which is the behavior in the 3-D map is always regular and periodic and bounded on large time, i.e. that the

behavior repeats itself regularly after cycles on large time intervals. The new 3-D map produces new several
chaotic attractors obtained via quasi-periodic route to chaos.
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INTRODUCTION

Since, the discovery of the first famous three
dimensional Lorenz chaotic attractor (I.orenz, 1963), chaos
as a most fascinating phenomenon in non-linear
dynamical systems, in recent years has
considerable increase in their study (Rossler, 1976;
Chua et al., 1968, Lu and Chen, 2002; Hu et al.,
2012, Mandal et al, 2013, 2011, Mammeri, 2016,
Gonchenko e af., 2005, 2007, Gonchenko and Meiss,
2006). The correct prediction on long-term of the behavior
of solutions in non-linear dynamical systems is interesting

been a

and important in understanding of evolution of behavior
of chaotic systems. Tt is well known the chaotic behavior
to be strongly dependent on initial conditions, small
changes in initial conditions can possibly lead to immense
changes in subsequent on large time intervals and is what
so ever difficult to precisely predict the future in next few
decades. For example, m life sciences an interesting still
open problem 1s to predict human future behavior from the
actions they took in the past in other word it 1s possible
to use someone past actions to predict his future
behavior? Many other researchers have investigate the
prediction of future behavior see for instance the research
done by Lehnertz and Elger (1998), Romanelli ef al. (1988)
Teong (2002), Arrow et al. (2008), Boettiger and Hastings
(2013) and Dauwels et al. (2009). In this study, the
accurate prediction of future behavior in 3-D chaotic
discrete system on large time intervals 1s possible. This
short study reports and imvestigate the effect of the sine
map m 3-D discrete systems, the modified 3-D discrete
map (Eq. 1) obtamed via direct modification of the 3-D
discrete system proposed by Dullin and Meiss (2000). The
map (Eq. 1) 1s defined with two sme nonlinearities
topologically different from any other know 3-D systems.
In this study, we have studied some impotents basic

properties for a new 3-D map and introduces and justifies
numerically a new physical phenomenon shown by the
new 3-D map (Eq. 1) which is the behavior of the
map (Eq. 1) is always regular and periodic, i.e. that the
behavior repeats itself regularly after cycles (periods) on
large time symmetry intervals. Furthermore the behaviors
observed for the map 1 are bounded and symmetric about

the origin. Considered essentially the following
modified 3-D map Eq. 1:
Xt+1 Yt
Ve |=| 8i0Z, @
7. a+bx, +cy,-sin z,

where, (a-c) € R’ are bifurcation parameters and (x, ¥,
z)eR® are the state variables. The choice of sinusocidal
map has an important role is to guarantee the
boundedness of the orbits of the map (Eq. 1) for all values
of a-c. Generally, the map (Eq. 1) 1s not symmetric and the
associated map of the new 3-D map (Eq. 1) 13 continuous
and differentiable on R’. Furthermcre the Jacobian
matrix of the map (Eq. 1) is not constant and equal to b
cos z (b#0 and cos z#0). The system (Eq. 1) can be
transform into a third-order difference Eq. 2 as follows:

= atbsinz, ,+csinz,  -sinz, 2

ZtH

MATERIALS AND METHODS

Qualitative properties of the map: In this study, we will
show that the all orbits of the map (Eq. 1) are bounded
and are lles mside in a box and we investigate
domains for the bifurcation parameters (a, b, ¢) ¢ R’
in which the fixed points of the map (HEq. 1) are
asymptotically stable.
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Theorem 1: The all orbits of the map (Eq. 1) are bounded
for every parameters (a-c) € R’ and t=2 and for all finite
mitial conditions (x,, v, Z,).

Proof: We use the following standard results, the real
sequence (z,), is bounded if there is one positive real such
that |z|<k for every neN. In our case the sequence (z),
given in satisfies the following inequality, |z/<1+al+bl+c|
because [sin z|<1 for every zeR. Since, the real 1+al+|b[+|c|
1s positive, thus, the sequence (z), 13 bounded for every
(a, b, c)cR’ and t>2. Thus, implies the all orbits of the map
(Eq. 1) are bounded for every (a, b, ¢)eR’, t=2 and for all
finite initial conditions (x;, v, z,)ER’.

Conclusion 1: The all orbits of the map (Eq. 1) are lies
inside in the box:

{ v, Zjen k<1, M<1, [z <1vfal+ ol +[e]} )

Proof: It’s very easy to prove this conclusion, since, the
map (Eq. 1) is equivalent to:

X sin 7, ,
Yt"'l = Sln Zt (4)
Zony atb sinz ,+c sin z ,-sin z,

Theorem: The fixed point A(x, vy, z) of the map (Eq. 1) is
asymptotically stable for all acR and if and only
if (b, &)eu,_ =% where:

-1<b<1
: 2. ] (5)
£2,:9b (b+1)cos z 1<C<1-(1 b)cos z
COS Z cos Z
-1<b<1
. R 2 (6)
£,0 11H1-b)cos Z<c<b (b+Dicos z’-1
cos Z cos Z

Proof: The characteristic polynomial of the Jacobian
matrix of the map (Eq. 1) calculated at the fixed pomt
A (x, v, z) which takes the form, P,(4) = A, according to
the result available in Ogata (1995), we conclude that the
fixed point A of the map (Eq. 1) 1s asymptotically stable if
the followng conditions hold |b cos z<1, l+cos z-c
cos z-b cos 70, 1-cos z-¢ cos z+b cos z-¢ cos z=0 and
1-b* cos’ z=b cos® z-c cos z-c cos z. From Eq. 1, we have
Eq. 5|bj<1 and from Eq. 2, Eq. 3 and Eq. 5, we have Eq. 6 ¢
cos z<1-(1-b) |cos z, from Eq. 4 we have Eq. 7 ¢ cos z=b

{b+1) cos® z-1 and from Eq. 6 and 7, we get Eq. 8 b (b+1)
cos’ z-1<c cos z=<l-(1-b) |cos z|. Finally, the conditions
Eq. 1 and 8 give the all conditions Eq. 5 and 4 of
asymptotic stability for the fixed point A. For example,
the fixed pomnts of the map (Eq. 1) are the real solutions of
the system:

X =y, y=sin z, z=atbx+cy-sin z
Hence, one may easily obtain Eq. 7:

z-(b+e)sinz+sinz-a =0

Can’t be compute the fixed points of the map (Eq. 1)
analytically, we remark if a = 0, the point (0, 0, 0) it 15 fixed
point of the map (Eq. 1) for all values of the bifurcation
parameters (b, ¢)eR’. Then we have the following
theorem:

Theorem 3: If a = 0, the fixed point (0, 0, 0) of the
map (Eq. 1) is asymptotically stable if and only if the
following conditions holds:

-1=h=Z
b (b+1)-1<c<b

If we choose a=0, b=08 and ¢ = 0.1. Then with this
values the fixed pomt (0, 0, 0) i1s asymptotically
stable and we have the following three eigenvalues A, =
-0.8566-0.6229i 4,=-0.8566+0.6229i and A, = -0.3380, thus
‘)Ll, 2, 3|<1 .

Bifurcation analysis of the map: In this study, we will
illustrate some observed chaotic behaviors, the dynamical
behaviors of the map (Eq. 1) are investigated numerically.
Figure 1-6 show the bifurcation diagram and the diagram
of the variation of the largest Lyapunov exponent of the
map (Eq. 1) that are obtained at different values of
parameter a, ac [-4, 4]. However, we deduce from the
bifurcation diagram Fig. la that the proposed map
(Eq. 1) exhibit a quasi-periodic bifurcation scenario route
to chaos for the selected values of the bifurcation
parameter a.

First, we fix the initial condition x, =y, = z,= 0.01 and
b =08, ¢=0.9 and let the parameter a vary m the interval
[-4, 4], the map (Eq. 1) exhibits the following dynamical
behaviors as shown in Fig. 4a and b). For the
quasi-periodic with periodic windows at the pomta = -2.72
the dynamical behavior the map (Eq.1) is in the
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a) The symmetric bifurcation diagram for the map
(Eq. 1) obtained for b= 0.8, ¢ = 0.9 and -1 <a<1
and b) Vamation symmetry of Lyapunov,
exponent of the map (Eq. 1) forb=0.8,¢=0.9and
-l1zax<l
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a) The symmetric bifurcation diagram for the map
(Eq. 1) obtained for b =08 ¢ = 0.9 and -2<a<2,
and b: Variation symmetry of Lyapunov exponent
of the map (Eq. ) forb=0.8, ¢ =0.9and -2<a<?2
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Fig. 3: a) The symmetric bifurcation diagram for the map

(Eq. 1) obtained forb=0.8 ¢ =0.9and -3<a<3 and
b) Varation symmetry of Lyapunov exponent of
the map (Eq. 1) forb=0.8, ¢=09and -3<a<3

Fig. 4 a) The symmetric bifurcation diagram for the map

{(Eq. 1) obtained forb=0.8 ¢ =0.9and -4<a<4 and
b) Varation symmetry of Lyapunov exponent of
the map (Eq. 1) forb=0.8, ¢ = 0.9 and -4<a<4
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Fig. 5. a) The symmetric bifurcation diagram for the map
(Eq. 1) obtained forb= 0.8 ¢ = 0.9 and -8<a<8 and
b) Variation symmetry of Lyapunov exponent of
the map (Eq. 1) forb=0.8, ¢ =0.9 and -8<a<8
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Fig. 6 a) The symmetric bifurcation diagram for the map
(Eq. 1) obtained for b=0.8¢c=0.9and -12<a=<12
and b) Vanation symmetry of Lyapunov exponent
of the map (Eq. 1) forb=0.8,¢c=09and -12<a<12

quasi-periodic-40 as shown in Fig. 7d and at the point
a = -3.52 the behavior s quasi-periodic as shown in
Fig. 7¢, for the range -4<a<-2.72 the behavior of the
map (Eq. 1) 1s chaotic with periodic windows in the
chaotic band which is verified by the corresponding
largest Lyapunov exponent 18 positive, Fig. 7a and b
shows, respectively the chaotic behaviors of the
map (Eq. 1) when a = -376 and a = -36
(Fig. 1-3).

Secondly, for the range O<a<1.68 the dynamical
behavior of the map (Eq. 1) 1s periodic which 1s verified by
the corresponding largest Lyapunov exponent is negative
as shown m Fig. 4b for the range 1.68<a<2.32 the
dynamical behavior of the map (Eq. 1) 18 quasi-periodic
orbits with periodic windows at the point a = 2.24 the
dynamical behavior of the map (Eq. 1) 18 inthe
quasi-periodic-19 as shown in Fig. 8e and f shows the
quasi-periodic attractor of the map (Eq. 1) whena = 1.84
for the range 2.32<a<2.72 the dynamical behavior of the
map (Eq. 1) is chaotic with periodic windows in the
chaotic band which is verified by the corresponding
largest Lyapunov exponent is positive. For the
range 2.72<a<3.6 the dynamical behavior of the map
(Eq. 1) is quasi-periodic with periodic windows at the
point a = 3.52 the dynamical behavior of the map (Eq. 1) is
1n range-1.68<a<0 the dynamical behavior of the map
(Eq. 1) is periodic which is verified by the corresponding
largest Lyapunov exponent i1s negative as shown in
Fig. 4b for the range -2.32<7a<-1.68 the dynamical behavior
the map (Eq. 1) 1s quasi-periodic with peniodic
windows at the pomnt a = -224 the dynamical
behavier the map (Eq. 1) is in the quasi-periodic-19
attractor as shown in Fig. 7e and f shows the quasi-
periodic attractor of the map (Eq. 1) when a = -1.84 for the
range -2.72<a<-2.32 the dynamical behavior of the map
(Eq. 1) is chaotic with periodic windows in the chaotic
band which is verified by the corresponding largest
Lyapunov exponent 1s positive. For the range -3.6<ax<-
2.72 the dynamical behavior of the map (Eq. 1) is the
quasi-periodic-40 as shown m Fig. 8d and at the
point a = 3.52 the dynamical behavior is quasi-periodic as
shown mn Fig. &c for the range 3.6<a<4 the dynamical
behavior of the system (Eq. 1) is chaotic with periodic
windows in the chaotic band which is verified by the
largest Lyapunov exponent 1s positive, Fig. 8a and b,
respectively show the dynamical behavior of the map
(Eq.1)whena=3.76 and a = 3.6.

Precise long-term prediction of behavior: Dynamical
systems theory is an area of mathematics used to describe
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the behavior of dynamical systems. The correct prediction
of the behavior of orbits of dynamical map (Eq. 1) 1s
important in understanding of evolution process and
reduces uncertainty. From the above analysis and the
bifurcation diagrams in Fig. 1a, band 6a, b we deduce
that the dynamical behavior on long-term of the map
(Eq. 1) is always regular periodic and bounded and has a
horizontal stretch, 1.e. that the dynamical behavior repeats
itself on large time symmetry intervals ([-a, a], acR) as it
moves along the a-axis and the cycles of this regular
repeating are called periods and the amplitude of the
behavior bands will be 1 (confined between-1 and +1) as
shown in Fig. 1a, b and 6a, b. Furthermore, the dynamical
behavior of map (Eq. 1) given in Fig. 7 and 8 are
respectively symmetric about the origin and inside the
two fimte symmetry ntervals [-a, 0] and [0, a], acR
(Fig. 7a-f and 8a-f).

CONCLUSION

In thus study, the prediction accuracy on long-term of
in 3-D possible this
phenomenon 1s justified by numerical mvestigation. In
other hand an analytic properties for the dynamics of this

future behavior systems is

system 1s also presented in term of a singlebifurcation

parameter. Furthermore, the new 3-D system produces
new several chaotic attractors observed wvia. quasi-
periodic route to chaos.
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