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Abstract: Wireless Sensor Network Deployment (WSND) 1s an active research topic. Different approaches have
been effectively developed for WSND. Multi-Objective Evolutionary Algorithms (MOEAs) are regarded as
powerful deployment methods because of thewr adaptive flexibility in effectively searching and providing
mumerous deployment options for the user. In this study, a computationally effective and practically aware
Pareto-based multi-objective evolutionary approach was developed for WSND. On the one hand, the
initialization of the population and crossover operation were modified to obtain solutions that meet the
connectivity constramts and improve the computational aspect for producing the solutions. On the other hand,
a constraint of the dead zone was added to make the deployment practically aware in presence of restricted
areas 1n the Region of Interest (ROI). The approach of the current study was compared with that of Khalesian
and Delavar by generating the values of the lifetime and coverage as the conflicting objectives of the
deployment. Results showed that the developed approach outperforms the previous approach with respect to
these objectives.
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INTRODUCTION

Wireless Sensor Network (WSN) 18 a technology
developed to address the growing need for the
observation and control of environments. Origmally, the
growth of WSN applications is conducted by military
applications. WSN are currently used in various fields,
such as medicine, environmental risk momnitoring, traffic
control, disaster momtoring and industrial process control
(Debnath et al., 2016) . The various types of sensors as
well as the liunited need for infrastructure, make WSNs
capable of providing continuous measurements in a wide
range of environments for a large variety of applications
(Juul et al., 2015).

A sensor 1s a device capable of sensing objects i an
environment and transforming the data gathered by the
network for processing. Each sensor has a low processing
unit, small data storage, limited battery and limited
coverage and communication ranges (Njova ef af., 2016).
Sensor nodes are distributed in different places and work
together to communicate mformation gathered from a
Region of Interest (ROT) through links that connect them
wirelessly and send this information using multi-hop

commumnication to the base station called sink which
sends the data to the user or to other networks
{Abdollahzadeh and Navimipour, 2016).

WSN deployment is a major step in WSN design and
1s considered a solution for reducing the effects of sensor
limitations (Yick et al., 2008). Efficient deployment of the
sensors is very important in improving coverage area
and prolong lifetime of the network (Juul et al, 2015;
Tsai et al., 2015). Connectivity 1s another critical 1ssue in
designing a sensor network for proper functioning
regardless of diverse situations (Debnath et al., 2016).
One of the major challenges in sensor deployment is
finding a trade-off among the conflicting objectives of the
network, coverage and lifetime under certain connectivity
constraints.

Multi-objective optimization has been used as an
effective mathematical tool for addressing this type of
optimization (Debnath et «l., 2016). Multi-objective
considers several conflicting objectives
simultaneously. In such a case, a set of alternatives with
different trade-offs, called Pareto optimal selutions or
non-dominated solutions generated instead of single
optimal solution.
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In a practical environment, restricted areas such as
rivers, lakes and unsafe areas can block the connectivity
of sensor nodes. Connectivity blocking i1s an important
challenge in WSND (Wahab et al., 2016a, b).

Most of the existing studies on WSN assume that
homogeneous sensors can be deployed anywhere (not
regarding “restricted areas” that exist in practical
situations). Khalesian and Delavar (2016) proposed the
Constrained Pareto-based Multi-objective Evolutionary
Approach (CPMEA) to maximize coverage and mimmize
energy consumption. They also designed a genetic-based
operator which involves crossover and mutation for
ensuring an effective search for optimal solutions.
However, their work not aware for some areas in practical
environments that are not suitable for sensor deployment.
Another criticized aspect of the work by Khalesian and
Delavar (2016) is their design of crossover operation from
the perspective of computational complexity. In this
study, we improve the CPMEA with the followmg
objectives:

+ Make CPMEA a Computationally Effective and
Practically Aware Pareto-based Multi-objective
Evolutionary Approach (CE-PA-PMEA)

¢ Evaluate CE-PA-PMEA and compare it with CPMEA

Literature review: Many researchers have proposed
approaches to enhanced the sensor deployment problem
for monitoring and swveillance in many environments
and to improving networks and their functionalities
(Syarif et al., 2014).

The existence of restricted areas or obstacles in an
ROI may degrade W SN functicnality and these obstacles
may cause loss of comnectivity links between sensor
nodes, thereby causing the network to break down. Wang
and Ssu (2013), proposed a scheme for detecting
obstacles in the ROI by identifying the size and location
of these obstacles using radio umits fitted in each sensor.
The scheme recognizes the obstacles by marking the
sensor nodes around the obstacle boundaries. Jourdan
and de Weck (2004), proposed a multi-objective algorithm
that 13 based on the genetic approach to optiumize W3SN
deployment by providing Pareto-optimal (non-dommated)
solutions to maximize the coverage and lifetime of the
network. Jameii et al. (2015), proposed an algorithm that
15 based on Non-dominated Sorting Genetic Algorithm
(NSGA-2) to optimize coverage, number of active nodes
and energy consumption by putting some sensor nodes
in sleep state. Liu and He (2014), proposed an approach
that 1s based on ant colony optimization with a greedy
mechanism to solve the problem of grid-based coverage

with low cost and connectivity maintenance. This
approach can dynamically adjust the sensing and
commumication range to reduce energy consumption,
thereby prolonging network lifetime. Zorlu and Sahingoz
(2016}, proposed a Genetic algorithm for sensor
deployment optimization to maximize WSN coverage
with the minimum number of homogeneous sensors.
Syarif et al. (2014a, b), used a multi-objective approach for
WSN deployment with some fixed obstacles. This
approach which is based on NSGA-2, aims to optimize
coverage and connectivity for WSN deployment by
dividing the ROT into grid cells to identify the obstacles.
They also proposed fitness and ranking functions for
defining the best solution from Pareto Fronts (PFs).
Sengupta et al. (2013), provided a method that depends
on a multi-objective evolutionary algorithm and uses a
decomposition approach to convert the problem of PF
approximation mto several single-objective optimization
problems.

The deployment problem: In this study, the deployment
problem is defined and the related objectives are
introduced with mathematical formulations.

Problem definition: This research considers a two-
dimensional rectangular environment ROI where K
homogeneous sensors are deployed. This environment 1s
subject to some restricted areas. The sensors have a
pre-defined coverage zone for the sensing and a
communication zone for cormecting with one another. The
sensors send data directly or wvia. multi-hop
communication to the single sink node (unlimited energy
node), assuming that the sink 1s located at the center of
the ROL. No movement 1s mvolved as the sensors are
assumed stationary.

Problem formulation: The formulation of the wireless
deployment problem as a multi-objective optimization 1s as
follows:

F(x) = [fl(x),f?(x)] —Max

»  The first objective f1 represents the coverage
»  The second objective {2 represents the lifetime

Decision variable x:

s xi, yi: represents the location of sensor node;

o x=x1,vyl,x2,¥2 .., xk yk represents the location of
the sensor nodes as the decision variable

where, x represents the feasible solutions with problem
constraints.
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Fig. 1: The Pareto front of multi-objective problem MOP

A solution x* dominates the other solution x” (if (x*)=
fE)Vie {1,2, ., M} and filx*i=fi(x") Jie {1,2, .. M}
is denoted as F (x*)>F (x”) where M is the number of the
objectives in the problem.

The solution that i3 not dominated by any
other solution in the objective space is an optimal
(non-dominated) solution. The set of these optimal
solutions 1s the Pareto Front (PF).

Figure la illustrates a PF with two objectives: the
Pareto optimal solutions in the PF (marked with an
asterisk) provide better values for the objective functions
than any other solution in the objective space. The
rectangle represents the 1deal solution which provides the
mimmum objective values and is often considered
unreachable. The solid circles represent the solutions that
are dommated by at least one solution in the PF. In
Fig. 1b, the bold curve mndicates the PF. The solid circles

are the feasible solutions in the feasible region and the
remaining solutions outside the feasible region (marked
with a triangle) are considered infeasible (Jamen ef af.,
2015). The conflicting objectives, we considered in WSN
are as follows:

Coverage: The total coverage of the ROI 1s the ratio of the
areas covered by all the sensors to the total area of the
ROT:

)EROIg(XG’YG)
N

Cover = Sl e

G

)- 13e{l, . k) JAxG7 <

0 otherwise,

And:

g(x,. ye

where, Ax; = X,-X; Ays = Vi-¥a, Ng 18 the total number of
grids mn the ROI and R, would be the sensing range of a
sensor node if the ROI were divided mto grid pomts
where each pont 1s covered by at least one node.

Lifetime: The lifetime 1s the ratio of time taken until one of
the sensor nodes runs out of energy (failure) to the
maximum network lifetime:

falure, 1

T

max

min{T,,,. }i=L ..k

Life =

where, min {Tg,,.} is the minimum value of the failure time
of the sensor nodes and represents the maximum number
of sensing cycles before the energy runs out and T, is
the maximum possible number of sensing cycles and
represents the maximum lifetime of the network.

MATERIALS AND METHODS

The proposed approach: This study proposes the
CE-PA-PMEA for wireless sensor deployment as well as
the operators designed and used for this purpose.

The WSN is modeled as a graph G(k) = (Ver, Lnk)
where Ver is the set of vertices (sensor nodes), Lnk is the
set of links connecting the vertices and K is the number
of sensor nodes. A link may exist between any two sensor
nodes if the Buclidean distance between them 1s less than
the commumnication range Re. Theorem 1 of Khalesian and
Delavar (2016) of graph theory 15 used for checking the
comectivity of the produced graphs to ensure the
required cormectivity of the designed WSN. The general
steps of the proposed algorithm are illustrated by a
flowchart of Fig. 2.
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Fig. 2: The CE-PA-PMEA general steps

Theorem 1: Let G be the adjacency matrix of a
connected graph and let Y = [yijli, j = 1, ..., k be the

matrix y = GH+G, .., +G". Then & is comnected
if and only ift y; # O for all distinct 1, j = 1,
2.k

5 veen

Tnitialization: The proposed initialization process aims to
produce an mitial graph with one node which 13 the sink
node. The first node is randomly generated in the
environment while maintaining the avoidance constraint
of the restricted areas in ROI by not generating nodes
within the boundaries of this areas. Then, the next sensor
1s also randomly generated but with two constramts: the
avoidance constraint of the restricted areas and being
in the union of the communication zone of at least
one of the preceding sensors until a graph with k nodes
and k-1 edges is obtained. With this process, we do not
need to check the comnectivity of the graph and only
need k adding operation thus, the time needed for
mitialization operation is less than that in the previous
approach. This process 1s clarified by the flowchart
in Fig. 3.

/ N = Number of sensors /
v

Initialize a graph with a sink |

node H number of nodes =0

umber o
nodes<N

Yes

Choose random node from the
praph node 1

Add a new node to the graph |
node 2

Add an edge between
node 1 and 2 y

Fig. 3: The initialization steps

Evaluation of the population: After the initialization
process, we choose promising solutions from the current
population as parents for the next generation.

The values of the objectives should be calculated for
the whole population and then the old Pareto solutions
are combined with the population. Then, the Pareto set is
determimed and the two best solutions are selected in
terms of Pareto dominance. The coverage and lifetime
objectives are computed in study 2. Algorithm 1 shows
the evaluation of the lifetime objective which calculated as
(Khalesian and Delavar, 2016).

Algorithm 1; Lifetime evaluation:

Input: Number of sensor nodes (k), initial energy of each sensor (E=0), path
loss exponent (ze [2, 6]), transmission quality parameter (3), power
amplifier energy consumption (amp) and minimum distance between nodes
(i)

Output: Lifetime

Step 1: SetE (O)=Eforalli=1,2,...k

Step 2: Calculate the minimum transmit energy via. Puy = duin
Step 3: Calculate the maximum possible number of sensing cy cles via:

Tmax =

min'

Step4: FORI=1,2, ..k do

Step 4.1: Calculate the shortest path from the sensor node to the sink

Step 4.2: Calculate the traffic load for the sensor node according to node
level with the sink

Step 4.3: Calculate the distance from the sensor node to the next node

Step 4.4: Calculate the transmit energy Py =3 di*

Step 5: Calculate T failure

. E
Ty = Min
e 2]

e T,
Lifetime= B

MAX

Step 6: Set
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Determining the pareto solutions: For finding the Pareto
set in the multi-objective optimization, we calculate the
value of the objectives for whole population and
combined with previous Pareto solutions. we follow who
proposed an approach to determimng the non-demmated
solutions. This approach is summarized as follows:

. Sort all the solutions in decreasing order of their
first objective function and create a list (O)

. Initialize a set S, and add the first element of list O
to 3,

. For every solution O, (other than the first

solution) of list O, compare selution O, with the
solutions of S,

. If any element of set S, dominates O, delete O1
from the list
. If O; dominates any seclution of set S, delete

that solution from S,
. If O; is non-dominated by the elements in set
3,, then update set 3, = S, U O,
¢ The Pareto solutions are in the resulting non-
dominated set 3,

Selection operation: The well-known Pairwise
Tournament (PT) and Roulette Wheel (RW) selection
operators are used. We also use a selection operator
equal to 0.5. If the random number generated 1s greater
than 0.5, then the selection will depend on the coverage
fitness values; otherwise, the selection will depend on the
lifetime fitness values. Selecting parents by PT is
explamed by Algorithm 2 and selecting parents using RW
is explained by Algorithm 3.

Algorithm 2; PT selection:
Tnput: The values of the objectives of the Pareto solutions and the number
of tournament solutions k
Output: The selection of the best solution as a parent
Step 1: FOR each Pareto solution
x(hje
{1, ..., number of pareto solutions}
fi G0, Wie{l, 2, ..., M}, M is the number of objective fimctions
IF r and > 0.5 Then
objective Value () =fi(x), ..., (Coverage objective)
ELSE
objective Value (j) = f3(x) ... (Lifetime objective)
END IF
END FOR
Step 2: Select k random individuals fiom the input
Step 3: Select the best individual of k with the highest objective value as a
parent

Algorithm 3; RW selection:

Tnput: The values of the objectives of the Pareto solutions
Output: The selection of the best solution as a parent
Step 1: FOR each Pareto solution x (), j={l, ...
solutions}

, number of Pareto

fi(x). vie {1, 2, .., M}, M is the number of objective functions
IF r and > 0.5 THEN
objective Value (j) =1, (%), ..., (Coverage objective)

ELSE
objective Value () =1, (x), ...., (Lifetime objective)
END IF
END FOR
Step 2. FOR each Pareto solution x (), j € {1, ..., number of Pareto
solutions}
Objecti alue ( j
Probability ObjectiveValue(j) = M
Sum (0b_| ective value)
END FOR

Step 3: Calculate the cumulative sum of the probability objective value
Step 4: Choose the first member of the curnulative surmn where:
curnulativeSum=rand where rand ¢ [0, 1]

Crossover operators: The crossover aims to produce new
solutions for the next generation by selecting two
solutions from the population; these solutions are called
parents and exchange their information with each other
with a rate probability (crossover rate) to generate new
solutions called children (offsprings). The crossover
operation 1s different from the previous approach. In the
proposed approach, we perform the crossover in a light
way. Two parents are combined to generate a new W3N
with a graph of 2k-2 edges after that a new graph with sink
node is initialized and then a random node with its
assoclated edges 1s selected from the combmation and
communicated to the new graph with respect to the
connectivity constraint of the combined parents graph.
we repeatedly select random nodes until a new graph with
k-1 edges and k nodes which inherited the positions and
therr comnections from their parents. The crossover
process is applied to generate the two children shown in
the flowchart in Fig. 4.

Mutation: The purpose of the mutation is to maintain
diversity in the population by modified the location of
some nodes accordingly to the connectivity constraints
with some probability rate (mutation probability). The
mutation implemented as (Khalesian and Delavar,
2016).

Termination criterion: When the maximum Number of
Generations (N,) reached, the pareto front returned as
optimum solutions in the search space.

Practical awareness for dead zone areas: The previous
approach does not process the problem of presence of
restricted areas or geographical areas where sensors
should not be localized. The network may be negatively
affected if the sensors are placed mn these areas, thereby
causing the sensor nodes to fail and the networl to break
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Fig. 4: Flowchart of crossover process
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Fig. 5: The several states of crossing between the dead zone and the communicating zone

down. Thus, inside the environment, we assume the

presence of a square-shaped area with specific
boundaries we called it dead zone in which the sink node
should not be placed. During the geometric solution of
the 1mtialization and crossover operation, the potential
positions of the sensor nodes is tested.

states  of founded

between the dead zome and the commumnicating zone

Several Crossing  are

because the position of the sensor nodes (xi, yi)
should be generating inside a communication area (Fig. 5).
These states are redefimng  the
communication area boundaries after exclusion of the
dead  zone  area that defined
constraints: xi=xrl; xi>x12; yi<yrl;

processed by

as mequality
yvizyr2 where, xrl,
x12, yrl, yr2 denoted as the boundaries of the

dead zone.
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Fig. 6: a- d) PFs of the comparisons between the approaches without dead zone for P1
RESULTS AND DISCUSSION Table 1: Parameter settings
Parameter No. of No. of Crossover
. . setting No.  generations _individuals rate Mutation rate
The efficiency and effectiveness of the proposed  py 230 200 ol ol
evolutionary approach are evaluated by mvestigating its P2 100 200 1.0 0.1

results and comparing them with those of CPMEA
(Khalesian and Delavar, 2016).

We present the evaluation measures of the
developed approach with its two selection operations, PT
and RW, for both developments CE (Computationally
Effective) and PA (Practically Aware) and the Comparison
with the Previous Approach (CPMEA) is applied.

Two main scenarios (areas with and without a dead
zone) are considered to validate the practical awareness
of the developed approach. Moreover, the objectives of
the networle coverage and lifetime are calculated. The
parameters settings considered during the operation of
these approaches shown in Table 1.

No dead zones in the ROT: First, we compare the previous
and our proposed approaches m the ROI without a
restricted area.

CPMEA-PT vs. CPMEA-RW: The performances of the
previous approach with PT and with RW are compared.

The PFs for the two approaches are generated for the
evaluation. Figure 6a shows the PFs for the parameter P1.
The PF generated by PT dominates that generated by RW
for the both objectives. Figure 7a shows the Pfs for
the parameter P2. The PF generated by PT
dominates that generated by RW with respect to the
lifetime.

CPMEA-PT vs. CE-PMEA-PT: The previous approach
and our computationally efficient approach, both with PT
are compared. The PFs for the two approaches are
generated. Figure 6b shows the PFs for P1. The solution
locations are optimal for the coverage with respect to
CE-PMEA-PT and optimal for the lifetime with respect to
CPMEA-PT. While Fig. 7b shows the CE-PMEA-PT 1s
optimal for the two objectives for P2.

CPMEA-RW vs. CE-PMEA-RW: The previous approach
and our computationally efficient approach, both with RW
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Fig. 7: a-d) PFs of the comparisons between the approaches without dead zone for P2

are compared. The PFs for the two approaches have been
generated. Figure 6-¢ shows the Pfs for P1 and
Fig. 7-¢c shows the Pfs for P2. Both of them shows
that CE-PMEA-RW 13 more optimal for the lifetime and the
coverage with respect to the previous approach.

CE-PMEA-PT vs. CE-PMEA-RW: We compare the
performances of our computationally efficient approach
with PT and with RW for checking which of theme is
superior on another. Figure 6d shows the PFs for P1. The
PF generated by PT 1s more optimal for the lifetime than
for the coverage. By contrast, the PF generated by RW 1s
more optimal with respect to the coverage than to the
lifetime. In Fig. 7d, the PF generated by PT is more optimal
for the coverage than lifetime and there 1s no superiority
of one of them over another.

Dead zones in ROT: This set of comparisons is conducted
with the assumption of a retracted area intersects with the
commurication area that lead to the dead zones n ROL

CPMEA-RW vs. CPMEA-PT: We implement the previous
approach in the ROI with a dead zone in which the sensor
nodes cannot be placed. The PFs for the two approaches

have been generated. Figure 8a shows the PFs for P1. PFs
show that the previous approach fails to provide feasible
solutions because of its lack of the practical awareness
achieved by incorporating the constraints of preventing
the dead zone. Figure 9-a shows the PFs for deferent
parameter settings.

CPMEA-PT vs. CE-PA-PMEA-PT: The previous
approach and owr practically aware approach CE-PA-
PMEA, both with PT are compared. Figure 8b shows the
PFs for P1. We can see that the PF of the previous
approach does not appear in this case, thereby mdicating
that the previous approach fails to provide a solution
when a dead zone exists in ROI. Figure 8b show that the
PF of CE-PA-PMEA-PT outperform the CPMEA-PT for
the two objectives in with respect to P2.

CPMEA-RW vs. CE-PA-PMEA-RW: The previous
approach and CE-PA-PMEA,, both with RW are compared.
The PFs of CPMEA-RW and CE-PA-PMEA-RW are seen
in Fig. 8¢. The PF for our approach dominates that of the
previous approach for the lifetime and the coverage.
Figure 9¢ also shows that CE-PA PMEA-RW outperform
the CPMEA-RW for the two objectives.
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Fig. 9: a-d) PFs of the comparisons between the approaches with presence of dead zone area for P2
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Fig. 10: a- d) The execution time for initialization and crossover for CPMEA and CE-PA-PMEA

CE-PA-PMEA-PT vs. CE-PA-PMEA-RW: Finally, we
compare the performances of our approach CE-PA-PMEA
with PT and with RW. Figure 8-d shows that PT has a
better achievement with respect to lifetime and coverage
than RW for P1. Also, Fig. 9d shows that with respect for
P2.

Computational time comparisons: A comparison
regarding the computational time of the imtialization
operation and the crossover operation for both previous
and proposed approaches was implemented to check the
computational complexity, Fig. 10 shows that execution
time for the proposed approach outperform that of the
previous approach, this prove that the proposed
approach 1s computationally effective.

CONCLUSION

In this study, an wnprovement of the CPMEA by
Khalesian and Delavar has been proposed to maximize
coverage and mimmize energy consumption that lead to
prolong the lifetime of the network. The improvement is
concentrated on two aspects: computational performance
and practical awareness of the dead zone. The former has
been implemented by modifying the imtialization and
crossover operations and the latter has been implemented
by meorporating an additional constraint in the algorithm.
Results show the superiority of our developed algorithm
over CPMEA with respect to the PF and the two
objectives of deployment, lifetime and coverage.
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