Tournal of Engineering and Applied Sciences 13 (13): 5096-5104, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Deep Residual Network for Sound Source Localization in the Time Domain

"Dmitry Suvorav, “Ge Dong and 'Roman Zhukov
'Center for Space Research, Skolkovo Institute of Science and Technology,
143026 Moscow, Russia
*School of Aerospace Engineering, Tsinghua University, 100084 Beijing, China

Abstract: This study presents a system for sound source localization mn time domain using a deep residual
neural network. Data from the linear 8 channel microphone array with 3 cm spacing 1s used by the network for
direction estimation. We propose to use the deep residual network for sound source localization considering
the localization task as a classification task. This study describes the gathered dataset and developed
architecture of the neural network. We will show the traimng process and its result in this study. The developed
system was tested on validation part of the dataset and on new data capture in real time. The accuracy
classification of 30 m sec sound frames is 99.2%. The standard deviation of sound source localization is 4°. The
proposed method of sound source localization was tested inside of speech recognition pipeline. Tts usage
decreased word error rate by 1.14% in comparison with similar speech recognition pipeline using GCC-PHAT
sound source localization.
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INTRODUCTION

The purpose of the research 1s to develop a sound
source localization system based on data obtained from a
linear compact microphone array. The system should be
resistant to noise and reverberation and also should be
able to work in real time on conventional perscnal
computers.

A large amount of noise and reverberation in
captured sound 1s the key problem for distant speech
recognition systems (Woelfel and McDonough, 2009). To
solve this problem, a sound signal can be captured by
microphone array to perform sound source localization
and beamforming. In this case, the full process of sound
capture and processing will consist of the following steps
(Kumatani et al., 2012):

+  Sound capture with microphone array
*  Sound source localization and tracking
¢+  Beamforming

*  Post-filtering

Sound source localization 13 the key element in this
architecture because its accuracy defines quality of
algorithms for implementation at further stages.
Beamforming and post-filtering use previously defined
sound source direction as input parameter.

At the moment there are a large number of methods
for sound source localization: weighted GCC-PHAT
{Grondin and Michaud, 2015) and 1its analogs which use
sound chamels correlation The baseline Version of
GCC-PHAT 15 presented in Eq. 1 and 2:

Y (@)Y, (m)e”
Gccm(r)—jw do )

where, Y (w) and Y{w) are discrete fourier transforms of k
and 1 channels of the sound frame from the microphone
array. Likelihood of presence of active sound source at
direction 9

loglik(81)=$ nGCCy (1, (8))) (2
Where:
M = A number of channels
e = A direction (azimuth for a linear microphone
array, azimuth and elevation for planar and 3D
configurations)

T, (8) = A theoretical delay between k and 1 channels
for ®, direction of arrival

IDOA algorithms (Tashev and Acero, 2006)
estimating phase delays on different frequencies
between channels of captured multichannel sound
(Eq. 3-7).
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Likelihood of presence of active sound source with
frequency w at direction ©;:

‘mod -A(m e ) )H

loglik (8, | )= ] 3)

me

Where:
Alw, ® ;) = A vector of theoretical phase differences
between k and zero microphones at

frequency
w = The active sound source located at direction
® and = A vector of measured phase differences

between k and zero microphones at
frequency w

8 (@) = £V (0)-2Yy () )
() = [8().8,{®), ... 8, (0} ] &)

Probability of presence of active sound source with
frequency w at direction ©;:

o loglik(#, | m)}

{logﬁk(glw)J

)

(6)

P(6 |o) =

The most probable direction to the wideband sound
source:

6= argmax, (2, P(6, | ) (7

Scaming of the surrounding area with delay-and-
sum beamformer (Valin et al., 2007) or other types of
beamformers.

Likelihood of presence of active sound source with
frequency w at direction ©, when scanmng is performed
using delay-and-sum beamformer:

loglik (8, | m) :ﬁxf; ot vm(o) ()

The most probable direction to sound source can
also be calculated wsing Eq. 6 and 7. MUSIC algorithms
(Ishi et af., 2009) and thewr modifications. Probability of
presence of active sound source with frequency w at
direction ®;;

1
afom, 6 )H(I-USU:)O\'.((D, 8,)

loglik (6, )= (9

Where:

a(w, ®) = The capturing matrix with size Mby I’ (Tis a
number of sound sources )
1, = Signal subspace eigenvectors matrix

(Tashev, 2009)

The most probable direction to sound source can also
be calculated using Eq. 6 and 7. Sound source localization
algorithms based on deep neural networks (Yalta et al.,
2017) wing convolutional and residual layers. Vector of
probabilities of presence of sound source at possible
directions:

P(8, ., By, )=F(Y (@), ... Y, (@) (10

where, N 13 a number of checking directions. The
architecture proposed by Yalta ef af. (2017) is shown in
Fig 1. Human speech localization algorithms based on
processing data from microphone array and video camera
(Suvorov and Zhukov, 2017).

| Input layer, 257x20, 16 channels |

>
| 2D convolutional layer, 32 filters, 11 filter size |

¥
| 2D convolutional layer, 32 filters, 1x1 filter size |

¥
[ 20 convolutlonal Tayer, 32 filters, [xT filter size|

¥
[ 2D convelutional Iayer, 32 filters, 3<3 filter size | |

v
| 2D convolutional layer, 32 filters, 1>1 filter size |

| 2D convolutional layer, 32 filters, 1x1 filter size |

¥
[ 2D convolutional layer, 32 filters, 3x3 filtlersize | T

v
| 2D convolutional layer, 32 filters, 1x1 filter size |

2D convolutional luyer,'az filters, 1x1 filier size |
¥

2D convolutional layer, 32 filters, 3%3 filter size | A

3
2D convolutional layer, 32 filters, 45%4 filter size |

I

+
| 2D convelutional layer, 32 filters, 1x1 filter size |
l

L3
Max pooling 1x4 |

¥
| 2D convelutional layer, 32 filters, 45%4 filter size |

'3
| 2D convolutional layer, 64 filters, 45x4 filter size |
+

| Max pooling 1x4 |

[ 2D convolutional layer, 1*23 filters, 45=4 filter size |
| 2D convolutional layer, ;56 filters, 45x4 filter size |
| 2D convolutional layer, ;’12 filters, 45x4 filter size |
| Dense laye:: 2048 units |
| Dense lay:r, 361 units |

Fig. 1: Residual CNN proposed by Yalta et al. (2017).
Each convolutional layer is followed by the ReLU
non-linearity
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All the methods except the one based on neural
networks consider the localization problem as a problem
of testing the hypothesis about sound source presence in
a specific space sector which leads to an increase in
required computing power as 1t 1s needed to check sound
source presence in the surrounding space with a specified
step (Tashev, 2009). Also, their inplementations use
assumptions about the plane front of an acoustic wave
(Tashev, 2009) which leads to errors in localization of
sound sources located closely to a microphone array
(Ronzhin and Karpov, 2008).

The method based on neural networks described by
Yalta et al. (2017) considers the localization problem as a
problem of sound frame classification into sound source
direction classes and the classification of active sound
source absence. As input data, the algorithm uses the
Discrete Fourier Transform (DFT) for every channel with
sound duration of about several tens of milliseconds
Necessity i DFT
computation for each channel on each iteration and use of

with some previous frames.
two-dimensional convolutional layers, lead to increased
computing complexity of the algorithm. Moreover, the
algorithm uses only amplitude information from DFT and
doesn’t use phase information. It can also negatively
affect the accuracy of localization.

Further in the study, a sound source localization
method based on deep convolutional neural networks
using as input, multichannel sound frames with fixed
duration from microphone array will be proposed.
Unlike in the method introduced in (Yalta et al., 2017) the

network uses only one-dimensional convolutions
which significantly reduces its computing complexity.
Also the process of traiming dataset collection, neural
network training and system testing will be

described.
MATERIALS AND METHODS

Dataset: To perform experiments with deep neural network
traiming, a big dataset of labeled data 1s required. To solve
this problem a python application was developed which
plays a speaker whilst simultaneously
recording it with an 8-channel microphone array with 3 cm

sound via.

spacing, implemented on the basis of MEMS microphones
with PDM mterface (Suvorov and Zhukov, 2017) which 1s
shown in Fig. 2. The application randomly chooses and
plays a music file for a duration of 30 sec from an array of
one-channel sound files from “GTZAN genre collection”
collected n the framework by Tzanetakis and Cook (2002).
In this way, one-hour multichammel sounds for each
direction with a 10° step from 0-180° were recorded. One
hour of silence was also recorded. Everything was
recorded in a 2*3 m room. The sound was recorded with
16 kHz frequency with 16 bit resolution.

As dataset was collected with a linear microphone
array, further the task of sound source localization was
considered as a task for estimation of azimuth to sound
source because the use of linear microphone array makes

1t mmpossible to determine an elevation angle for obvious
geometric reasons.

Fig. 2: Linear microphone array used for capturing the dataset and real time experiments with proposed sound source

localization
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¥
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Fig. 3: A deep newal network, used for sound source
localization

Neural network architecture: The developed neural
network architecturally consists of four big blocks (Fig. 3):

* Input layer, accepting 8-channel sound frames
from microphone array with duration of 480 samples
(30 m sec) in float format

¢ First 1D convelutional layer (Eren, 2017) performing
primary feature extraction (Eq. 11)

* Block consisting of two residual layers (He et al,
2016). Residual layers allow a delay m overfitting of
neural networks and therefore train deeper networks

¢ Decision-making blocks, consisting of two fully
connected layers, create outputting probabilities that
a sound frame has a sound from one of the possible
azimuths and probability of absence of any active
sound sources in the frame:

= Qs . LA
VS B K[ hsiu b
7

Where:

Ulx,s) = A 1D inputsignal containing S channels

t = Number of output channel

Kix, s, t) = A matrix of size L. by S of the filter for t
output channel

After each convolutional layer, a batch norm layer is
used to allow to train neural networks with a lesser
number of iterations to postpone overfitting (Toffe and
Szegedy, 2015). Batch Normalization Transform is shown
inEq. 12-15.

Mini-batch mean:

_ 1 jiusl 12
up = ;Ezlxl (12)
Mini-batch variance:
1l om 2 13
0L 37 (x ) a3
Normalize:
g =%t (14)
,Icsé-e
Final scale and shift:
Y, =%, B (15)
Where:
m = A batchsize
X = A batch of mput data
yandp =  Parameters to be learned

After the first fully comected layer, a dropout layer
15 also used to delay the moment of overfitting to later
iterations (Srivastava ef al., 2014). Feed-forward operation
of the dropout layer:

1{1] =Bemnoulli{p) (16)

§=ry {amn
Where:
T = A vector of independent bernoulli random variables
each of which has probability p of being 1
* = An element-wise product

ReLU non-linearity (Maas et af., 2013) 1s used after
all the convolutional and fully commecting layers with the
exception of the last dense layer:

f(x)= max(0, x) (18)

On the last layer SoftMax non-linearity (Maas ef af.,
2013) 1s used as it 1s needed to normalize output of the
neural network in such a way that the sum of all
probabilities were equal to 1:
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Fig. 4: The learning process of the developed system

=

f(xl)=ﬁ (19)

Unlike the solution proposed in (Yalta et al., 2017)
the network accepts original signals but not its fourler
image. Tt is possible as the fourier transformation is
essentially decomposition into narrowband components
and therefore one-dimensional convolutional layers are
able to learn this decomposition themselves.

Training and testing: A prototype of the proposed
system was realized with python based on the Theano
and Lasagne hibraries. The learning was done with the
Adam optimization algorithm (Kingma and Ba, 201 5) with
a low parameter of traimng speed (Eq. 21-23). The leaming
was done 1n 20 epochs on a NVIDIA GeForce GTX 1070
graphics card using cuda technology. Cross-entropy was
used as a loss fimction (Eq. 24). In the training process,
the values of the loss function, the accuracy of the
classification and the standard deviation of the azimuth
determination error were momtored. In Fig. 4, it can be

2.000 Ho
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seen that overfitting happened only after 18 epochs:

w[t+1] = w[t] <o e v[t1] (20)
yelti]+e
g[t+1] = y.g[t]+(1—u)V(L,w[t])V(L,W[t]) (21)
v[t+1] = Bv[t]+(1-B) V(L. w]t]) (22)
Where:
t = Tteration number
L = Loss function
W = Set of trainable parameters of the network
g, 0 = Scalar parameters of the algorithm
and
(23)

1
Lipy)= X Xy los(p,)

where, matrix p is N*M output of the neural networls,
matrix y is a one-hot encoded real class identifier, M is set
to a number of classes, N is a batch size.
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To analyze the training results t-SNE visualization
{Maaten and Hinton, 2008) for features generated by the
penultimate fully connected layer was implemented
(Fig. 5). It clearly shows the cluster structure of features
and the mutual arrangement of clusters corresponding to
the spatial arrangement of real azimuths which indicates
the good quality of the neural network training.

RESULTS AND DISCUSSION

Evaluation in real time: An application was developed
which allows sound capture from the microphone array in
real time and determines the direction of the sound source
azimuth. Using this application, sound source directions
were calculated in real time for sound sources in a
previously known position. Measurements were done in

400 . - 0° - 70° @ 110° a room where the training dataset was recorded and in
’ =160 = 40° » 80° another room that had a significantly different area and
300 =130° = 10° = 50 : o . :
. o, WI00° *l4p0 * 20° filling meaning it had different reverberation parameters.
200 * . s . -,-gt‘ =90° « Silence It can be seen in Fig. 6 that average absolute values of
oy LY =60° 150 o 2 5 . . &
100 ¥ 18] P 170° 120° sound source direction azimuth determination error did
N g o 180° ; Ca
B 1 #‘ 80 not exceed 12° in both cases which is a good resuli,
¢ ‘ ’
3 00 . ¥ - congidering that the neural network was trained with an
“ R ¥ azimuth step of 10° Mostly the same accuracy of
-100 ‘ . e ;
., localization in the new room and room where the train
-200 dataset was recorded, indicates a good generalization
300 : property for the trained neural network.
Figure 7 gives an example of results of continuous
-400 localization of a stationary source that plays music.
-400 -200 0 200 400 i . .
Layers It can be seen that localization error is complexity of
choice between neighbouring classes of neural
Fig. 5: T-SNE visualization of penultimate lay er features networks.
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Fig. 6: Dependence of average absolute values of azimuth determination error from real azimuth with active sound
source. Light grey bars show measurements conducted in the new room. Dark grey bars show measurements
conducted in the room where the training dataset was recorded
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Impact on the whole speech recognition pipeline: A
comparison of the accuracy of far-field speech recognition
was performed with three configurations of speech
recognition pipeline to understand the impact of
developed sound source localization on the final result of
speech recognition. The first speech recognition pipeline
didn’t use microphone array processing:

. Audio capturing from the first chammel of the
microphone array

. Voice activity detection using code from the
WebRTC project

. Speech recognition using Google speech API

The second speech recognition used sound source
localization developed by Grondin and Michaud (2015):

. Anudio capturing from the microphone array

. Sound source localization using weighted
GCC-PHAT with Kalman filtering

. MVDR beamformer { Tashev, 2009)

. Zelinski post-filter (Aleinik, 2017)

. Speech recognition using Google speech API

Implementations of MVDR beamformer and Zelinski
post-filter were used from BTK toolkit. And the last
speech recognition pipeline used developed sound
source localization based on the residual network:

. Audio capturing from the microphone array

. Proposed sound source localization using residual
network with Kalman filtering

. MVDR beamformer

. Zelinski post-filter

. Speech recognition using Google speech API

The 100 phrases were recognized simultaneously
through 3 described speech recognition pipelines. Speech
recognition pipelines shared the same microphone array
during the experiment. Voice sound sources were located
on distance 1.5 m from the microphone array at different
directions. Word Error Rates (WER) were calculated and
compared for results from pipelines (Table 1).

The best result was shown by the solution with
proposed sound source localization. High WER is shown
by the solution with GCC-PHAT because the width of the
beam pattemn formed by the MVDR bearnformer is lower
than the accuracy of the sound source localization
achieved GCC-PHAT on used microphone array, So,
sometimes beam pattern became orentated not to the
sound source. The width of the beam pattern of the
MVDR beamformer is about 20° (Fig. 8). Average
localization error of the developed sound source

Table 1: WER value for different configurations of speech recognition
pipeline

Speech recognition pipeline WER.(%0)

Mone audio capturing without any speech enhancerent 221
Speech enhancement using beamforming and GCC-PHA

sound source localization 2.99
Speech enhancement using beamforming and proposed

sound source localization 1.85

150 4
100

0o«
50

Azimuth (deg)

100 4

-150

7000 000

2000 3000 4000 5000 €0
Frequency (He)

Fig. 8: The beam pattern of the MVDR beamformer in the
endfire orientation for used microphone array

localization system is not higher than 12°. So, their
combination achieves a good quality of speech
enhancement resulting in low WER. Directivity pattern
was modeled vsing following equations (Vary and Martin,
2006):

Y(we)= ‘H(UJ)HU(U),@)E (24)

MVDR filter coefficient vector (Vary and Martin, 2006):

O B
H(UJ) — H(m)NN ii((i)) (25)
2 ()" (@) 2()
The noise cross-power spectral matrix (Tashev, 2009):
ONN(w)= @,,.,.(0)+D, (@) (26)
The instrumental noise cross-power spectral matrix
(Ishi et ad., 2009):
D, (0)=N] (o)L (27)

where, N{w) is the magmnitude of the instrumental noise in
gingle microphone. The cross-spectral density for an
isotropic noise field (Tashev, 2009):

CDIj(w)ND(w)sinc(Wd”} (28)
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O, (w) - Dy ()
Golo)-| (29)
Dy (o) 0 Dy ()
Where:
Ngw) = The noise specttum captured by an
ommdirectional microphone
v = The speed of sound
d; = A distance between i and j microphones

The propagation vector for linear microphone array
(Vary and Martin, 2006):

a{w) = {al: e%,i:], . M} (30)

where, p; 13 a position of 1 microphone. The unit vector in
the required direction of beam pattern (Vary and Martin,
2006):

jocos(8)pi

u(no) {ui:e Vom0, .., M—l} (31)

CONCLUSION

A sound source localization method based on deep
residual neural networks was developed. Tt doesn’t
require a captured signal to be transformed from time
domain to frequency domain with fourier transformation
which positively affects system performance. The
developed method demonstrated good accuracy of the
sound source direction azimuth determination with a
linear compact microphone array even without the
consideration of object dynamics with a Kalman filter or
particle filter. As a further improvement to the method, the
system can be trained in such a way that will allow us to
determine several sound source locations
simultaneously.

SUGGESTIONS

Also in future research, the architecture should
be complemented by LSTM, BLSTM or GRU layers
(Chung et al., 2014) to make the network able to consider
object dynamics.
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